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Sample Calculation of Population Distribution
We demonstrate an example of the calculation of the population probability 
distribution from a set of imperfectly estimated samples using this methodology.  
We imagine that k points are selected from a Gaussian distribution with true mean 
0.4 and standard deviation 0.1.  For each detected event, the parameters are not 
known perfectly, but described by a discrete PDF of N points, with an unbiased 
mean centered on the chosen sample value and a standard deviation uniformly 
chosen in [a,b], intended to represent statistical errors in parameter estimation.  
We model the underlying probability distribution as a Gaussian with two 
parameters, mean μ and standard deviation σ.  We construct a posterior on μ and 
σ with an Metropolis-Hastings MCMC, using uniform sampling from the prior for 
the jump proposal distribution.  The result is shown in Fig. 2.

We also explore the effects of the choices of k, N, and [a,b] on the accuracy of the 
recovery of the population distribution.  We find that N=100 is a sufficient number 
of points to sample each PDF, and higher values of N do not improve accuracy.  
Varying the number of detected samples, k, we observe a clear anti-correlation 
between k and the accuracy of determining μ and σ: as expected, it’s harder to 
reconstruct the population with fewer events.  Fig. 3a shows that the error in the 
recovered population mean scales approximately as the inverse square root of k, 
while the standard deviation is over-estimated at low k because we are sensitive to 
the variance in individual PDFs.  Finally, we study the impact of the accuracy of 
individual PDFs by varying [a,b] and find that the accuracy deteriorates significantly 
once the PDF width exceeds the standard deviation of the underlying population.

Discussion
We introduced a robust Bayesian technique for estimating a modeled population 
distribution based on an arbitrary number of independent detected events, each 
with an associated posterior probability distribution function describing the degree 
of statistical uncertainty in parameter estimation.  This technique can be readily 
deployed as an inexpensive post-processing tool, which can run in a tiny fraction of 
the time required to sample the PDFs of individual events.  
To better apply this technique to GW astronomy, we should:
• Properly account for selection biases in the detected sample.  
• Characterize systematic errors in parameter estimation for individual events.
• Choose model families for the population distribution based on prior 

astrophysical knowledge.    
• Determine the number and accuracy of detections which would be necessary to 

constrain astrophysical models with the observed population distributions of 
specific parameters, e.g.,  masses and spins [see Mandel & O’Shaughnessy, 2009]. 

Abstract
Future ground-based and space-borne interferometric gravitational-wave detectors 
may capture between tens and thousands of binary coalescence events per year.  
There is a significant and growing body of work on the estimation of astrophysically 
relevant parameters, such as masses and spins, from the gravitational-wave signature 
of a single event [see posters by Raymond and Petiteau, talks by Porter and Lang]. 
This poster introduces a robust Bayesian framework for combining the parameter 
estimates for multiple events into a parameter distribution of the underlying event 
population.  The framework can be readily deployed as a rapid post-processing tool.

Introduction

The parameters of individual gravitational-wave events can be estimated with 
techniques like Markov Chain Monte Carlo [e.g., van der Sluys et al., 2008, ApJL 688 
61], Nested Sampling [Veitch & Vechhio, 2008, CQG 25 184010], or MultiNest [Feroz 
et al., 2009, CQG 26 215003], allowing us to determine the posterior probability 
density functions (PDFs).  These can be marginalized to produce PDFs for a single 
parameter, like the mass or spin of a binary member (e.g., Fig. 1a).  We’d like to 
combine PDFs from multiple independent detections into a statement about the 
distribution of the population being sampled.  However, smoothing methods like 
kernel density estimation (Fig. 1b) require ad hoc choices of smoothing parameters.  
Instead, we develop a theoretical framework based on Bayesian techniques to 
extract a population distribution from a set of individual detections.

Theoretical framework
We have k marginalized PDFs,           , and a parametrized model for the underlying 
population distribution,        .  We’d like to know how consistent a given population 
distribution is with the observations; this is given by Bayes rule:

If the k samples are independent, the likelihood of drawing those samples is:

The model distribution can be discrete (e.g., a histogram) or analytical (e.g., a multi-
modal Gaussian).  In practice, we will have discrete PDFs, which could present 
difficulties in computing the overlap integral with an analytical model.  However, we 
can use the fact that the PDFs are sampled according to the posterior, so the typical 
“volume” dλ corresponding to each value in the PDF chain is inversely proportional 
to the value of the posterior there, so

This allows us to compute the posterior probability for a distribution (thus giving us 
a distribution of distributions) as

We can also carry out model selection, by computing the odds ratio between two 
competing model families M1 and M2:

Figure 2 − Recovered joint distribution for μ and σ.  The true probability distribution 
with mean 0.4 and standard deviation 0.1 was sampled with k=20 detected events.  The 
PDF obtained for each event is a Gaussian centered on its true value with standard 
deviation taken uniformly from [a,b]=[0,0.2], sampled with N=100 points.  The weighted 
averages of the recovered parameters over the posterior density of the reconstructed 
population distribution are 0.4055 for the mean and 0.0958 for the standard deviation.

Figure 1 − The left panel (a) shows a possible multimodal marginalized posterior 
density function (PDF) for a single parameter of a single detected event.  The right 
panel (b) shows the results of estimating the distribution from individual samples 
by means of a kernel density estimator (KDE).  Twenty samples are taken from a 
bimodal distribution (solid red); the blue dashed curve shows a KDE where the 
smoothing parameter (bandwidth) was probably chosen to be too small, while the 
black dash-dotted curve shows the effect of a KDE with a large bandwidth 
parameter that over-smoothes the distribution.
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Figure 3 − The left panel (a) shows the error in the recovered mean (red) and 
standard deviation (blue) of the population distribution as a function of the 
number of detected events k.  The dashed red curve is the approximate analytic fit 
to k-1/2.  The right panel (b) shows the estimated mean as a function of the 
statistical uncertainty in each event a=b.  The dashed line is the true mean of the 
population distribution, 0.4, while the dotted line is the mean of the prior on μ.
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