Extracting the Distribution of Black-hole Parameters from Gravitational-wave Observations

(Image: MPI for Gravitational Physics / W.Benger-ZIB)
Ilya Mandel
(NSF AAPF, C I ERA@Northwestern University)
February 19, 2010
Formation and Evolution of Black Holes, Aspen

Jantar Mantar, Delhi

$C \underbrace{I} A$

Gravitational-wave observatories

LIGO:
Laser
Interferometer
Gravitational-wave Observatory

LISA:
Laser
Interferometer
Space
Antenna

Gravitational Waves

- Ripples in spacetime
- Caused by time-varying mass quadrupole moment; GW frequency is twice the orbital frequency for a circular, nonspinning binary

- Indirectly detected by Hulse \& Taylor [binary pulsar]
- Huge amounts of energy released: 5\% of mass-energy of a supermassive black hole binary is comparable to the electromagnetic radiation emitted from an entire galaxy over the age of the universe!
- GWs carry a lot of energy, but interact weakly: can pass through everything, including detectors!

$C \quad I \quad E \quad A$
 Opportunity and Challenge

Michelson-type interferometers

LISA Binary Sources

- LIGO sensitive @ a few hundred Hz
" NS-NS, NS-BH, BH-BH binaries
- LISA sensitive @ a few mHz
" massive black-hole binaries
- merger tree models to describe history of Galactic mergers
- could be detected anywhere in Universe, SNR up to thousands
- a few to tens of detections [e.g., Sesana et al., 2005]
" extreme-mass-ratio inspirals of WDs/NSs/BHs into SMBHs
- complicated modeling of dynamics in Galactic centers: loss cone problem, resonant scattering, etc.
- could detect tens to hundreds to z~1 [e.g., Gair et al., 2004]
» galactic white dwarf (and compact object) binaries
- 30 million in Galaxy, create noise foreground [Farmer \& Phinney, 2003]
- 20,000 resolvable

Embarrassment of riches

BHs @ Aspen. February 19, 2010
[Arnaud et al., 2007, CQG 24 S551]

LISA Data Analysis

$$
h(t)=h\left(M_{1}, M_{2}, \overrightarrow{S_{1}}, \overrightarrow{S_{2}}, \theta, \phi, D_{L}, e, \ldots ; t\right) \quad 17 \text { parameters }
$$

What has already been accomplished?

	MLDC 1	MLDC 2	MLCD 1B	MLDC 3
©	- Verification - Unknown, isolated - Unknown, interfering	- Galaxy of 3×10^{6}	- Verification - Unknown, isolated - Unknown, confused	- Galaxy of 6×10^{7} chirping
$\stackrel{I}{\infty}$	- Isolated \checkmark	-4-6x, over Galaxy and EMRIs	- Isolated \checkmark	- Over Galaxy spinning, precessing
$\sum_{\Psi}^{\widetilde{\sim}}$		- Isolated - 4-6x, over Galaxy and SMBHs	- Isolated \checkmark	$\cdot 5$ together, weaker
$\begin{aligned} & 3 \\ & 2 \\ & Z \end{aligned}$				- Cosmic string \checkmark cusp bursts - Cosmological background

Table by M. Vallisneri

Mock LISA Data Challenges

Need innovative search techniques to separate many overlapping signals: MarkovChain Monte Carlo, MultiNest, genetic algorithms

[Gair, IM, Wen, 2008, CQG 25 184031]

$C \quad A R A$
 Markov Chain Monte Carlo

$\mu\left(M_{\odot}\right)$

Signal: 2.994

Animation by Marc van der Sluys

Iteration: $0.008+00$
Dota points: $0.00 \mathrm{E}+00$

SMBH binaries

Model	N	$N_{\text {det }}$	$N_{10 \% D_{L}}$	$N_{10 \operatorname{deg}^{2}}$	$N_{10 \operatorname{deg}^{2}, 10 \% D_{L}}$	$N_{1 \operatorname{deg}^{2}}$	$N_{1 \operatorname{deg}^{2}, 1 \% D_{L}}$
SE	80	$33(25)$	$21(8.0)$	$8.2(1.5)$	$7.9(1.1)$	$2.2(0.6)$	$1.7(0.1)$
SC	75	$34(27)$	$17(4.4)$	$6.1(0.4)$	$5.5(0.4)$	$1.3(0.1)$	$1.3(0.1)$
LE	24	$23(22)$	$21(7.7)$	$10(0.8)$	$10(0.7)$	$2.2(0.1)$	$1.2(0.05)$
LC	22	$21(19)$	$14(4.3)$	$6.5(0.5)$	$5.4(0.5)$	$1.8(0.04)$	$1.0(0.1)$

from [Arun et al. (LISA Parameter Estimation Taskforce), 2008, CQG 26, 094027]

$C \underbrace{C} A$

Mock LISA Data Challenge Results

Challenge 3.2 : Massive Black Holes

30 days before merger
Monte Carlo by Neil Cornish

Challenge 3.2 : Massive Black Holes

1 day before merger
Monte Carlo by Neil Cornish

source $\left(\mathrm{SNR}_{\text {true }}\right)$	group	$\begin{array}{\|r} \Delta M_{c} / M_{c} \\ \times 10^{-5} \end{array}$	$\begin{array}{r} \Delta \eta / \eta \\ \times 10^{-4} \end{array}$	$\begin{gathered} \Delta t_{c} \\ (\mathrm{sec}) \end{gathered}$	Δ sky (deg)	$\begin{array}{r} \Delta a_{1} \\ \times 10^{-3} \end{array}$	$\begin{array}{r} \Delta a_{2} \\ \times 10^{-3} \end{array}$	$\begin{gathered} D / D \\ 10^{-2} \end{gathered}$	SNR	FF_{A}	FF_{E}
MBH-1 (1670.58)	AEI	2.4	6.1	62.9	11.6	7.6	47.4	8.0	1657.71	0.9936	0.9914
	CambAEI	3.4	40.7	24.8	2.0	8.5	79.6	0.7	1657.19	0.9925	0.9917
	MTAPC	24.8	41.2	619.2	171.0	13.3	28.7	4.0	1669.97	0.9996	0.9997
	JPL	40.5	186.6	23.0	26.9	39.4	66.1	6.9	1664.87	0.9972	0.9981
	GSFC	1904.0	593.2	183.9	82.5	5.7	124.3	94.9	267.04	0.1827	0.1426

BHs @ Aspen. February 19, 2010

$C \xrightarrow{C} A$
 Extreme Mass Ratio Inspirals

Sound from Scott Hughes

Animation from Jon Gair

$C \underbrace{I \quad E-R} A$

Exploring íne spacetisoe...

BHs @ Aspen. February 19, 2010

$C \underbrace{I} A$

... taking lots of pictures

BHs @ Aspen. February 19, 2010

$C \underbrace{C E R} A$

Testing the no-hair theorem

Testing the no-hair theorem?

Stationary, vacuum, asymptotically flat spacetimes in which the singularity is fully enclosed by a horizon with no closed timelike curves outside the horizon are described by the Kerr metric

Do black holes have hair?

BHs @ Aspen. February 19, 2010
$M_{n}+i S_{n} \neq M(i a)^{n}$

[Gair, Li, IM, 2009, PRD 77:024035]

$C \underbrace{I} A$
 Third-generation detectors

- The Einstein Telescope:
» Underground, sensitive to 1 Hz
" Exciting science example: mergers of light seeds of massive black holes at high redshifts [Sesana, Gair, IM, Vecchio, 2009]
- ALIA/DECIGO/BBO
" Space-based LISAs on steroids
" Exciting science example: using 300,000 merging binaries as standard candles for precision cosmology: Hubble constant to 0.1%, w to 0.01 [Cutler \& Holz, 2009]

from [Gair, IM, Sesana, Vecchio, 2009]
- Pulsar timing [see next talk!]
" Sensitive to SMBHBs @ $10^{-8} \mathrm{~Hz}$

Parameter estimation on multiple GW detections:

yield a set of individual marginalized posterior probability density functions

Parameter estimation on multiple GW detections:

 yield a set of individual marginalized posterior probability density functions

How do we combine these to make a statement about parameter distribution of the population being sampled?

Parameter estimation on multiple GW detections:

 yield a set of individual marginalized posterior probability density functions

POLL: How d ϕ we combine these to make astatement about parameter fistribytion of the poputation being sampled?
A:Add them? \downarrow,

Parameter estimation on multiple GW detections:

yield a set of individual marginalized posterior probability density functions

POLL: How do we combine these to nake a statement about parameter distribution of the Population being sampled?

A:Add them?

B: Multiply them?

Parameter estimation on multiple GW detections:

yield a set of individual marginalized posterior probability density functions

POLL: How do we combine these to make statement about parameter distribution of the population beng sampled?

A:Add them?

B: Multiply them?

C : Something else?

Parameter estimation on multiple GW detections:

 yield a set of individual marginalized posterior probability density functions

POLL: How do we combine these to make a statement about parameter distribution of the population being sampled?

A: Add?

B: Multiply?

C : Something else?

Parameter estimation on multiple GW detections:

yield a set of individual marginalized posterior probability density functions

POLL: How do we combine these to make a statement about parameter distribution of the population being sampled?

A: Add?

B: Multiply?

C : Something else?

See IM, 20I0, arXiv:09I2.553I for the answer.:-)

