Extracting the Distribution of Black-hole Parameters from Gravitational-wave Observations

(Image: MPI for Gravitational Physics / W.Benger-ZIB)

Ilya Mandel (NSF AAPF, COMPARENT Of Black Holes, Aspen

Jantar Mantar, Delhi

E

LIGO: Laser Interferometer Gravitational-wave Observatory BHs @ Aspen. February 19, 2010 LISA: Laser Interferometer Space Antenna

Gravitational Waves

- Ripples in spacetime
- Caused by time-varying mass quadrupole moment; GW frequency is twice the orbital frequency for a circular, nonspinning binary

- Indirectly detected by Hulse & Taylor [binary pulsar]
- Huge amounts of energy released: 5% of mass-energy of a supermassive black hole binary is comparable to the electromagnetic radiation emitted from an entire galaxy over the age of the universe!
- GWs carry a lot of energy, but interact weakly: can pass through everything, including detectors!

Opportunity and Challenge

Michelson-type interferometers

Ε

LISA Binary Sources

- LIGO sensitive @ a few hundred Hz
 » NS-NS, NS-BH, BH-BH binaries
- LISA sensitive @ a few mHz
 - » massive black-hole binaries
 - merger tree models to describe history of Galactic mergers
 - could be detected anywhere in Universe, SNR up to thousands
 - a few to tens of detections [e.g., Sesana et al., 2005]
 - » extreme-mass-ratio inspirals of WDs/NSs/BHs into SMBHs
 - complicated modeling of dynamics in Galactic centers: loss cone problem, resonant scattering, etc.
 - could detect tens to hundreds to $z\sim1$ [e.g., Gair et al., 2004]
 - » galactic white dwarf (and compact object) binaries
 - 30 million in Galaxy, create noise foreground [Farmer & Phinney, 2003]
 - 20,000 resolvable

Embarrassment of riches

E

С

R

LISA Data Analysis

 $h(t) = h(M_1, M_2, \vec{S_1}, \vec{S_2}, \theta, \phi, D_L, e, ...; t)$ 17 parameters

What has already been accomplished?

	MLDC 1	MLDC 2	MLCD 1B	MLDC 3		
GB	 Verification Unknown, isolated Unknown, interfering 	 Galaxy of ✓ 3x10⁶ 	 Verification Unknown, isolated Unknown, confused 	 Galaxy ✓ of 6x10⁷ chirping 		
MBH	 Isolated 	• 4–6x, ✓ over Galaxy and EMRIs	 Isolated ✓ 	• Over Galaxy spinning, precessing		
EMRI		 Isolated 4–6x, over Galaxy and SMBHs 	 Isolated ✓ 	• 5 ✓ together, weaker		
New				 Cosmic string ✓ cusp bursts Cosmological ✓ background 		

Table by M. Vallisneri

Mock LISA Data Challenges

BHs @ Aspen. February 19, 2010

Need innovative search techniques to separate many overlapping signals: Markov-Chain Monte Carlo, MultiNest, genetic algorithms

[Gair, IM, Wen, 2008, CQG 25 184031]

Ε R

Markov Chain Monte Carlo

SMBH binaries

Model	N	$N_{ m det}$	$N_{10\% D_{L}}$	$N_{10 \text{ deg}^2}$	$N_{10 { m deg}^2, 10\% D_L}$	$N_{1 deg^2}$	$N_{1\mathrm{deg}^2,1\% D_L}$
SE	80	33(25)	21(8.0)	8.2(1.5)	7.9(1.1)	2.2(0.6)	1.7(0.1)
\mathbf{SC}	75	34(27)	17(4.4)	6.1(0.4)	5.5(0.4)	1.3(0.1)	1.3(0.1)
LE	24	23(22)	21(7.7)	10(0.8)	10(0.7)	2.2(0.1)	1.2(0.05)
\mathbf{LC}	22	21(19)	14(4.3)	6.5(0.5)	5.4(0.5)	1.8(0.04)	1.0(0.1)

from [Arun et al. (LISA Parameter Estimation Taskforce), 2008, CQG 26, 094027]

Mock LISA Data Challenge Results

Challenge 3.2 : Massive Black Holes

30 days before merger

Challenge 3.2 : Massive Black Holes

1 day before merger

Monte Carlo by Neil Cornish

Monte Carlo by Neil Cornish

$\frac{\text{source}}{(\text{SNR}_{\text{true}})}$	group 2	$\Delta M_c/M_c \times 10^{-5}$	$\Delta \eta / \eta \times 10^{-4}$	Δt_c (sec)	∆sky (deg)	$\Delta a_1 \\ imes 10^{-3}$	$\Delta a_2 \times 10^{-3}$	$\Delta D/D \times 10^{-2}$	SNR	FF_A	FF_E
MBH-1 (1670.58)	AEI CambAEI MTAPC JPL GSFC	2.4 3.4 24.8 40.5 1904.0	$6.1 \\ 40.7 \\ 41.2 \\ 186.6 \\ 593.2$	62.9 24.8 619.2 23.0 183.9	$11.6 \\ 2.0 \\ 171.0 \\ 26.9 \\ 82.5$	7.6 8.5 13.3 39.4 5.7	47.4 79.6 28.7 66.1 124.3	$8.0 \\ 0.7 \\ 4.0 \\ 6.9 \\ 94.9$	$1657.71 \\ 1657.19 \\ 1669.97 \\ 1664.87 \\ 267.04$	$\begin{array}{c} 0.9936 \\ 0.9925 \\ 0.9996 \\ 0.9972 \\ 0.1827 \end{array}$	$\begin{array}{c} 0.9914 \\ 0.9917 \\ 0.9997 \\ 0.9981 \\ 0.1426 \end{array}$

Extreme Mass Ratio Inspirals

Animation from Jon Gair

E

R

Exploring the spacetime...

BHs @ Aspen. February 19, 2010

E

R

... taking lots of pictures

Testing the no-hair theorem

Testing the no-hair theorem?

Stationary, vacuum, asymptotically flat spacetimes in which the singularity is fully enclosed by a horizon with no closed timelike curves outside the horizon are described by the Kerr metric

BHs @ Aspen. February 19, 2010

Е

Third-generation detectors

The Einstein Telescope:

Ε

- » Underground, sensitive to 1 Hz
- » Exciting science example: mergers of light seeds of massive black holes at high redshifts [Sesana, Gair, IM, Vecchio, 2009]

ALIA/DECIGO/BBO

- » Space-based LISAs on steroids
- » Exciting science example: using 300,000 merging binaries as standard candles for precision cosmology: Hubble constant to 0.1%, w to 0.01 [Cutler & Holz, 2009]
- Pulsar timing [see next talk!]
 - » Sensitive to SMBHBs @ 10⁻⁸ Hz

from [Gair, IM, Sesana, Vecchio, 2009]

How do we combine these to make a statement about parameter distribution of the population being sampled?

POLL: How do we combine these to make a statement about parameter distribution of the population being sampled?

POLL: How do we combine these to make a statement about parameter distribution of the population being sampled?

See IM, 2010, arXiv:0912.5531 for the answer. :-)