

CENTER FOR INTERDISCIPLINARY EXPLORATION AND RESEARCH IN ASTROPHYSICS

The Mock LISA Data Challenges

I. Mandel CIERA@Northwestern / MIT

for the MLDC Taskforce :

S. Babak, J. Baker, M. Benacquista, N. Cornish, S. Larson, I. Mandel, S. T. McWilliams, A. Petiteau, E. Porter, E. Robinson, M. Vallisneri (co-chair), A. Vecchio (co-chair)

GR-19, July 5 2010, Mexico City

What are the MLDCs ?

Goals :

- Demonstrate that we can meet the LISA science and data analysis requirements
- Develop common frameworks to measure the performance of analysis algorithms
- Understand data analysis quantitatively to translate requirements into design decisions
- Encourage and track development of LISA data-analysis infrastructure

MLDCs:

2

- Coordinated, voluntary effort of the gravitational wave (GW) community
- Periodically issue data sets with GW signals embedded in noise
- Data sets : Training (injection parameters are known) & Challenge (blind).

Develop a plan for increasing-complexity challenges (generation & analysis):

- Phase 1 (MLDC 1, 1B, 2, 3) : establish common standards for LISA orbits, noise & response; test recovery and parameter estimation of significant astrophysical sources.
- Phase 3 (MLDC 4, 5) : face global-fit problem; analyze real-world data.

MLDC Timeline

Formulated at the LIST meeting in Pasadena, 2005.

70 Participants from 25 institutions

- Albert Einstein Institute Golm
- Albert Einstein Institute Hannover
- APC, CNRS, Paris
- ARTEMIS, CNRS, Nice
- 🛎 U. of Auckland
- 💐 U. of Birmingham
- Caltech/NASA JPL
- 🛎 U. of Cambridge
- Cardiff U.
- Carleton College
- Chinese Academy of Science, Bejing
- 🛎 U. of Glasgow
- NASA Ames

- 💐 NASA Goddard
- 💐 U. Iles Balears
- Indian Inst. of Tech., Kharagpur
- 💐 U. Maryland
- Montana State U.
- Nanjing U.

- Northwestern U.
- Polish Academy of Science
- Rochester Institute of Technology
- U. of Texas Brownsville
- U. of Southampton
- 🗳 U. of Wroclaw

	participants	institutions
MLDC 1	40	10
MLDC 2	39	13
MLDC 1B	25	10
MLDC 3	27	15

MLDC progression

	MLDC 1	MLDC 2	MLDC 1B	MLDC 3	MLDC 4
Galactic binaries	 Verification Unknown isolated Unknown interfering 	• Galaxy 3x10 ⁶	 Verification Unknown isolated Unknown interfering 	• Galaxy 6x10 ⁷ chirping	• Galaxy 6x10 ⁷ chirping
Massive BH binaries	 Isolated 	• 4-6x, over "Galaxy" & EMRIs	• Isolated	 4-6x spinning & precessing over "Galaxy" 	 4-6x spinning & precessing, extended to low-mass
EMRI		 Isolated 4-6x, over "Galaxy" & MBHs 	• Isolated	 5 together, weaker 	• 3 x Poisson(2)
Bursts				 Cosmic string cusp 	 Poisson(20) cosmic string cusp
Stochastic background				• Isotropic	 Isotropic

The Mock LISA Data Challenge: from challenge 3 to 4 - I. Mandel for the MLDC task force - GR-19, July 5 2010

E

C

Challenge 3

The Mock LISA Data Challenges: from challenge 3 to challenge 4

Stanislav Babak¹, John G Baker², Matthew J Benacquista³, Neil J Cornish⁴, Shane L Larson⁵, Ilya Mandel⁶, Sean T McWilliams², Antoine Petiteau¹, Edward K Porter⁷, Emma L Robinson¹, Michele Vallisneri^{8,9}, Alberto Vecchio¹⁰ (the Mock LISA Data Challenge Task Force), Matt Adams⁴, Keith A Arnaud², Arkadiusz Błaut¹¹, Michael Bridges¹², Michael Cohen⁹, Curt Cutler^{8,9}, Farhan Feroz¹², Jonathan R. Gair¹³, Philip Graff¹², Mike Hobson¹², Joey Shapiro Key⁴, Andrzej Królak¹⁴, Anthony Lasenby^{12,15}, Reinhard Prix¹⁶, Yu Shang¹, Miquel Trias¹⁷, John Veitch¹⁰ and John T Whelan¹⁸ (the Challenge 3 participants)

CQG 27, 084009 (2009)

- MLDC 3.1 : 60 million chirping Galactic binaries,
- MLDC 3.2 : 4 6 spinning MBH binaries,
- MLDC 3.3 : 5 EMRIs,
- MLDC 3.4 : Poisson(5) cosmic string cusp bursts,
- MLDC 3.5 : Stochastic background.

Challenge 3.1: Galactic binaries

Injection : 60 million chirping galactic binaries of which 20,000 - 30,000 should be resolvable.

Participants and methods :

7

 AEIRIT (AEI Hannover & Rochester Inst. of Tech):
 LIGO-style hierarchical search based on the F-statistic and on frequency-domain rigidadiabatic templates.

— BhamUIB (U. Birmingham & Balearic islands):

Delayed rejection MCMC algorithm to search in 3 frequency windows: 0.3 mHz < f < 0.4 mHz, 0.9 mHz < f < 1 mHz and 1.6 mHz < f < 1.7 mHz.

— PoWrWa (AEI Golm, U. of Wroclaw & Polish Acad. of Sc.): Iterative matched-filtering search that uses the F-statistic and rigid-adiabatic templates.

Challenge 3.1: Galactic binaries

Results :

Used a correlation criterion, C >0.9 : for each recovered signal, C is computed using the closest injected signal with SNR > 3.

- AEIRIT :

1940 sources (95 % of recovered sources).

— BhamUIB :

494 sources (30 % of recovered sources but used just 3 narrow-bands).

— PoWrWa :

14,838 sources (33 % of recovered sources). However when correcting for a bug at f > 3 mHz, PoWrWa achieve 58 % for 6,955 sources at f < 3 mHz.

MTJPL entry for MLDC 2 (non-chirping) returned 20,000 sources with 99 % having C > 0.9

Injection :

4-6 MBH binaries

- 5 ("unknown" number : 4 -6) spinning Massive Black Hole binaries with :
 - 3 coalescing within the 2 years period,
 - and 2 outside of 2 years.
- MBH binaries embedded in instrumental noise and a partially resolved galaxy.

Condition on injected population :

SNR of sources in blind dataset :

including	$a_1/m_1 = 0-1, a_2/m_2 = 0-1$ MBH ₁ : $t_c = 90 \pm 30$ days, SNR ~ 2000	→ 1670.58
and 2–4 chosen from	MBH ₂ : $t_c = 765 \pm 15$ days, SNR ~ 20 MBH ₃ : $t_c = 450 \pm 270$ days, SNR ~ 1000	→ 12.82
	MBH ₄ : $t_c = 450 \pm 270$ days, SNR ~ 200 MBH ₅ : $t_c = 540 \pm 45$ days, SNR ~ 100	▶ 847.61
	MBH ₆ : $t_c = 825 \pm 15$ days, SNR ~ 10	160.05
plus Galactic confusion	randomized population with approx. SNR < 5 $\sim 26 \times 10^6$ binaries; no verification	18.95

for each: $m_1 = 1-5 \times 10^6 M_{\odot}, m_1/m_2 = 1-4,$

Data Challenge: trom challenge 3 to 4 - 1. Mandel tor the MLDC task torce - GR-19, July 5 2010

Participants and methods :

- AEI (AEI Golm):

Multimodal genetic algorithm with A-statistic [Petiteau et al., PRD 81 104016, 2010].

- CamAIE (U. Cambridge & AEI) : MultiNest with A-statisitc [Bridges et al., MNRAS 398 1601, 2009].
- GSFC (NASA Goddard):

10

Tempered Metropolis-Hastings MCMC algorithm found in Xspec [Arnaud et al., web].

— JPLCITNWU (JPL/CalTech & Northwestern U.):

Two stages search using a non-spinning MBH search & MultiNest [Brown et al., CQG 24 S595, 2007].

MTGWAGAPC (Montana State U. & APC, CNRS):

Parallel tempered MHMC algorithm using thermostated/frequency annealing [Cornish & Porter, 2006].

Results :

source	group	$\Delta M_c/M_c$	$\Delta \eta / \eta$	Δt_c	∆sky (deg)	Δa_1	Δa_2 ×10 ⁻³	$\Delta D/D$	SNR	FF_A	FF_E
(BRIttrue)		~10	~10	(sec)	(ueg)	~10	~10	~10			
MBH-1	AEI	2.4	6.1	62.9	11.6	7.6	47.4	8.0	1657.71	0.9936	0.9914
(1670.58)	CambAEI	3.4	40.7	24.8	2.0	8.5	79.6	0.7	1657.19	0.9925	0.9917
	MTAPC	24.8	41.2	619.2	171.0	13.3	28.7	4.0	1669.97	0.9996	0.9997
	$_{\rm JPL}$	40.5	186.6	23.0	26.9	39.4	66.1	6.9	1664.87	0.9972	0.9981
	GSFC	1904.0	593.2	183.9	82.5	5.7	124.3	94.9	267.04	0.1827	0.1426
MBH-3	AEI	9.0	5.2	100.8	175.9	6.2	18.6	2.7	846.96	0.9995	0.9989
(847.61)	CambAEI	13.5	57.4	138.9	179.0	21.3	7.2	1.5	847.04	0.9993	0.9993
	MTAPC	333.0	234.1	615.7	80.2	71.6	177.2	16.1	842.96	0.9943	0.9945
	$_{\rm JPL}$	153.0	51.4	356.8	11.2	187.7	414.9	2.7	835.73	0.9826	0.9898
	GSFC	8168.4	2489.9	3276.9	77.9	316.3	69.9	95.6	218.05	0.2815	0.2314
MBH-4	AEI	4.5	75.2	31.4	0.1	47.1	173.6	9.1	160.05	0.9989	0.9994
(160.05)	CambAEI	3.2	171.9	30.7	0.2	52.9	346.1	21.6	160.02	0.9991	0.9992
	MTAPC	48.6	2861.0	5.8	7.3	33.1	321.1	33.0	149.98	0.8766	0.9352
	$_{\rm JPL}$	302.6	262.0	289.3	4.0	47.6	184.5	28.3	158.34	0.8895	0.9925
	GSFC	831.3	1589.2	1597.6	94.4	59.8	566.7	95.4	-45.53	-0.1725	-0.2937
MBH-2	AEI	1114.1	952.2	38160.8	171.1	331.7	409.0	15.3	20.54	0.9399	0.9469
(18.95)	CambAEI	88.7	386.6	6139.7	172.4	210.8	130.7	24.4	20.36	0.9592	0.9697
	MTAPC	128.6	45.8	16612.0	8.9	321.4	242.4	13.1	20.27	0.9228	0.9260
	$_{\rm JPL}$	287.0	597.7	11015.7	11.8	375.3	146.3	9.9	18.69	0.9661	0.9709
MBH-6	AEI	1042.3	1235.6	82343.2	2.1	258.2	191.6	26.0	13.69	0.9288	0.9293
(12.82)	CambAEI	5253.2	1598.8	953108.0	158.3	350.8	215.4	29.4	10.17	0.4018	0.4399
	MTAPC	56608.7	296.7	180458.8	119.7	369.2	297.6	25.1	11.34	-0.0004	0.0016

The Mock LISA Data Challenge: from challenge 3 to 4 - I. Mandel for the MLDC task force - GR-19, July 5 2010

Ε

C

Coalescence during the observation : t_c < T_{obs}

Coalescence after the observation : $t_c > T_{obs}$

11

Results : SNR and Fitting Factor

	$_{(SNR_{true})}^{source}$	group $\begin{vmatrix} \Delta M_c/M_c & \Delta \eta/\eta \\ \times 10^{-5} \times 10^{-4} \end{vmatrix}$ $\begin{vmatrix} \Delta t_c & \Delta sky & \Delta a_1 & \Delta a_2 & \Delta D/D \\ (sec) & (deg) & \times 10^{-3} & \times 10^{-3} & \times 10^{-2} \end{vmatrix}$	SNR	FF_A	FF_E
$f_c < T_{obs}$	MBH-1 (1670.58)	AEI 2.4 6.1 62.9 11.6 7.6 47.4 8.0 CambAEI 3.4 40.7 24.8 2.0 8.5 79.6 0.7 MTAPC 24.8 41.2 619.2 171.0 13.3 28.7 4.0 Image: Comparison of the second of the s	$1657.71 \\ 1657.19 \\ 1669.97 \\ 1664.87 \\ 267.04$	$\begin{array}{c} 0.9936 \\ 0.9925 \\ 0.9996 \\ 0.9972 \\ 0.1827 \end{array}$	$\begin{array}{c} 0.9914 \\ 0.9917 \\ 0.9997 \\ 0.9981 \\ 0.1426 \end{array}$
servation :	MBH-3 (847.61)	When t _c < T _{obs} , the fitting factor is higher than 0.99 for most of the results	$\begin{array}{r} 846.96 \\ 847.04 \\ 842.96 \\ 835.73 \\ 218.05 \end{array}$	$\begin{array}{c} 0.9995 \\ 0.9993 \\ 0.9943 \\ 0.9826 \\ 0.2815 \end{array}$	$\begin{array}{c} 0.9989 \\ 0.9993 \\ 0.9945 \\ 0.9898 \\ 0.2314 \end{array}$
T _{obs} ob:	MBH-4 (160.05)	Since $f_c > I_{obs}$, the fifting factor is higher than 0.92 for most of the results $GSFC = 831.3 \ 1589.2 \ 1597.6 \ 94.4 \ 59.8 \ 566.7 \ 95.4 \ 1597.4 \ 1597.6$	$\begin{array}{r} 160.05 \\ 160.02 \\ 149.98 \\ 158.34 \\ -45.53 \end{array}$	$\begin{array}{c} 0.9989 \\ 0.9991 \\ 0.8766 \\ 0.8895 \\ 0.1725 \end{array}$	$\begin{array}{c} 0.9994 \\ 0.9992 \\ 0.9352 \\ 0.9925 \\ -0.2937 \end{array}$
ion : t _c > 1	MBH-2 (18.95)	AEI1114.1952.238160.8171.1331.7409.015.3CambAEI88.7386.66139.7172.4210.8130.724.4MTAPC128.645.816612.08.9321.4242.413.1JPL287.0597.711015.711.8375.3146.39.9	$20.54 \\ 20.36 \\ 20.27 \\ 18.69$	$\begin{array}{c} 0.9399 \\ 0.9592 \\ 0.9228 \\ 0.9661 \end{array}$	$\begin{array}{c} 0.9469 \\ 0.9697 \\ 0.9260 \\ 0.9709 \end{array}$
bservat	MBH-6 (12.82)	AEI1042.31235.682343.22.1258.2191.626.0CambAEI5253.21598.8953108.0158.3350.8215.429.4MTAPC56608.7296.7180458.8119.7369.2297.625.1	$13.69 \\ 10.17 \\ 11.34$	$\begin{array}{c} 0.9288 \\ 0.4018 \\ 0.0004 \end{array}$	$\begin{array}{c} 0.9293 \\ 0.4399 \\ 0.0016 \end{array}$

The Mock LISA Data Challenge: from challenge 3 to 4 - I. Mandel for the MLDC task force - GR-19, July 5 2010

C

Ε

Coalescence after the

Coalescence during the

Results : Sky position and distance

- 8 Antipodal sky position degeneracy
- 8 **Results consistent with FIM* prediction**
- 8 Errors comparable, if not better, to those of the non-spinning binary searches (idem for masses and time at coalescence)

Ε

The Mock LISA Data Challenge: from challenge 3 to 4 - I. Mandel for the MLDC task force - GR-19, July 5 2010

.3

.6

Coalescence after the

coalescence during the

Lobs

observation : t_c <

Tobs

. ار >

observation

Results : Spins

coalescence during the

Coalescence after the

14

* Fisher Information Matrix

Ε

Injection : 5 EMRIs embedded in instrumental noise. Low SNRs (20< SNR<36)

5 Emnis	5	EMRIs
---------	---	-------

for each: $\mu = 9.5-10.5 M_{\odot}, S = 0.5-0.7 M^2$, time at plunge $= 2^{21}-2^{22} \times 15$ s, ecc. at plunge = 0.15-0.25, SNR = 10-50... including EMRI₁: $M = 0.95-1.05 \times 10^7 M_{\odot}$

EMRI₁: $M = 0.95 - 1.05 \times 10^{-10} M_{\odot}$ EMRI₂ and EMRI₃: $M = 4.75 - 5.25 \times 10^{6} M_{\odot}$ EMRI₄ and EMRI₅: $M = 0.95 - 1.05 \times 10^{6} M_{\odot}$ 3 high mass events ("low" frequency)

2 low mass events ("high" frequency)

Participants and methods :

BabakGair (AEI Golm & Cambridge U.) :

Stochastic sampling \rightarrow MCMC to identify harmonics \rightarrow F-statistic search in the space of harmonics \rightarrow final MCMC (improved on [Babak et al., CQG 26 135004, 2009]).

EtfAG (Cambridge U. & Northwestern U.) :

Improved Time-Frequency method CATS (Chirp-based Algorithm for Track Search, improved on [Gair, Mandel, Wen, CQG 25 184031, 2008]).

MTAPCIOA (Montana State U., APC & Cambridge U.):

Parallel tempered MHMC combined with harmonic jump [Shapiro & Cornish, PRD 67 043014, 2009].

Results :

$ Source (SNR_{true}) $	Group	SNR	$\frac{\Delta M}{M} \times 10^{-3}$	$\overset{\underline{\Delta\mu}}{_{\mu}}_{\times 10^{-3}}$	$\stackrel{\frac{\Delta\nu_0}{\nu_0}}{\times 10^{-5}}$	$\Delta e_0 \ imes 10^{-3}$	$\begin{array}{c} \Delta S \\ \times 10^{-3} \end{array}$	$\substack{\frac{\Delta\lambda_{\rm SL}}{\lambda_{\rm SL}}\\\times10^{-3}}$	$\Delta spin$ (deg)	Δsky (deg)	$\frac{\Delta D}{D}$
EMRI-1 (21.673)	MTAPCIOA MTAPCIOA	$21.794 \\ 21.804$	$5.05 \\ -0.06$	$3.29 \\ -0.01$	$1.61 \\ -0.08$	$-5.1 \\ -0.05$	$^{-1.4}_{0.02}$	$-19 \\ 0.54$	$\begin{array}{c} 23\\ 3.5 \end{array}$	$2.0 \\ 1.0$	$0.07 \\ 0.13$
EMRI-2 (32.935)	MTAPCIOA BabakGair BabakGair BabakGair	32.387 22.790 22.850 22.801	$-3.64 \\ 33.1 \\ 32.7 \\ 33.5$	$-2.61 \\ -19.7 \\ -20.0 \\ -19.5$	$-3.09 \\ 10.1 \\ 9.94 \\ 10.5$	$3.8 \\ -33 \\ -32 \\ -33$	$0.87 \\ -7.3 \\ -7.2 \\ -7.4$	$12 \\ 250 \\ 250 \\ 240$	$11 \\ 47 \\ 58 \\ 40$	$3.7 \\ 3.5 \\ 3.5 \\ 3.5 \\ 3.5$	3×10^{-3} -0.25 -0.24 -0.25
EMRI-3 (19.507)	MTAPCIOA BabakGair BabakGair BabakGair EtfAG	$\begin{array}{r} 19.598 \\ 21.392 \\ 21.364 \\ 21.362 \\ \end{array}$	$1.62 \\ 1.77 \\ 2.26 \\ 1.51 \\ 54.0$	$\begin{array}{c} 0.38 \\ 1.01 \\ 1.88 \\ 1.01 \\ 4.88 \end{array}$	-0.10 1.95 2.71 2.09 -7375	$-0.35 \\ -1.2 \\ -2.0 \\ -1.3 \\ 26$	$-0.94 \\ -0.68 \\ -0.69 \\ -0.50 \\ 17$	-3.0 -2.3 -2.5 -1.7	$5.0 \\ 116 \\ 65 \\ 7.6 \\$	$3.0 \\ 4.5 \\ 6.1 \\ 6.2 \\ 32$	$-0.04 \\ 0.13 \\ 0.14 \\ 0.14 \\ 0.83$
EMRI-4 (26.650)	MTAPCIOA	-0.441	-8.77	-10.1	-6.03	-3.7	144	950	99	13	-2.3
EMRI-5 (36.173)	MTAPCIOA	17.480	-3.32	5.00	-1.80	0.22	55	62	43	1.8	-1.3

The Mock LISA Data Challenge: from challenge 3 to 4 - I. Mandel for the MLDC task force - GR-19, July 5 2010

E

С

Results : Detection and SNR

$\frac{\rm Source}{\rm (SNR_{true})}$	Group	SNR	$\begin{array}{c} \frac{\Delta M}{M} \\ \times 10^{-3} \end{array}$	$\stackrel{\Delta\mu}{\overset{\mu}{_{\mu}}}_{\times 10^{-3}}$	$\stackrel{\Delta\nu_0}{\times10^{-5}}$	$\begin{array}{c} \Delta e_0 \\ \times 10^{-3} \end{array}$	$\begin{array}{c} \Delta S \\ \times 10^{-3} \end{array}$	$\substack{\frac{\Delta\lambda_{\rm SL}}{\lambda_{\rm SL}}\\\times10^{-3}}$	$\Delta { m spin}$ (deg)	Δsky (deg)	$\frac{\Delta D}{D}$
EMRI-1 (21.673)	MTAPCIOA MTAPCIOA	$21.794 \\ 21.804$	5.05 - 9.06	$3.29 \\ -0.01$	$\begin{array}{c} 1.61 \\ -0.08 \end{array}$	$-5.1 \\ -0.05$	$-1.4 \\ 0.02$	$-19 \\ 0.54$	$\begin{array}{c} 23\\ 3.5 \end{array}$	$\begin{array}{c} 2.0 \\ 1.0 \end{array}$	$\begin{array}{c} 0.07\\ 0.13\end{array}$
EMRI-2 (32.935)	MTAPCIOA BabakGair BabakGair BabakGair	32.387 22.790 22.850 22.801	-3.64 33.1 32.7 33.5	-194 -20.0 -19.5	For hig recover	h mass ed.	events	, most c	of the S	SNR wa	s) ⁻³ .25 .24 .25
EMRI-3 (19.507)	MTAPCIOA BabakGair BabakGair BabakGair EtfAG	$19.598 \\ 21.392 \\ 21.364 \\ 21.362 \\$	1.62 1.77 2.26 1.51 54 J	0.8 1 1.8 1.0 4.88 -	The lov SNR wc	v mass is not f 26	events ully rec	were de overed.	etected,	, but th	e .04 .13 .14 .14 0.83
EMRI-4 (26.650)	MTAPCIOA	-0.441	-8/7	-10.1	-6.03	-3.7	144	950	99	13	-2.3
EMRI-5 (36.173)	MTAPCIOA	17.480	-3.32	5.00	-1.80	0.22	55	62	43	1.8	-1.3

Results : Masses

$\frac{\rm Source}{\rm (SNR_{true})}$	Group	SNR	$\begin{array}{c} \Delta M \\ \overline{M} \\ imes 10^{-3} \end{array} imes 1$	$\frac{\Delta\mu}{\mu}$ 10^{-3}	$\stackrel{\frac{\Delta\nu_0}{\nu_0}}{\times 10^{-5}}$	$\Delta e_0 \ imes 10^{-3}$	$\begin{array}{c} \Delta S \\ \times 10^{-3} \end{array}$	$\substack{\frac{\Delta\lambda_{\rm SL}}{\lambda_{\rm SL}}\\\times10^{-3}}$	$\Delta spin $ (deg) (∆sky (deg)	$\frac{\Delta D}{D}$
$\frac{\text{EMRI-1}}{(21.673)}$	MTAPCIOA MTAPCIOA	$\begin{array}{c c} 21.794 \\ 21.804 \end{array}$	$5.05 \\ -0.06 $ -	3.29 -0.01	$\begin{array}{c} 1.61 \\ -0.0 \end{array}$	 Very	<u>4</u> good e	<u>–19</u> stimati	23 on for 1	<u>2.0</u> he	$\begin{array}{c} 0.07 \\ 0.13 \end{array}$
EMRI-2 (32.935)	MTAPCIOA BabakGair BabakGair BabakGair	32.387 22.790 22.850 22.801	$\begin{array}{rrrr} -3.64 & -33.1 & -132.7 & -233.5 & -132.7 & -233.5 & -132.7 & -233.5 & -132.7 & -132$	-2.61 19.7 20.0 19.5	$\begin{array}{r} -3.0 \\ 10.1 \\ 9.94 \\ 10.5 \end{array}$, mass - 32 - 33	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	II the c	ases. 58 40	$3.5 \\ 3.5$	10^{-3} -0.25 -0.24 -0.25
EMRI-3 (19.507)	MTAPCIOA BabakGair BabakGair BabakGair EtfAG	19.598 21.392 21.364 21.362 	$1.62 \\ 1.77 \\ 2.26 \\ 1.51 \\ 54.0$	$\begin{array}{c} 0.38 \\ 1.01 \\ 1.88 \\ 1.01 \\ 4.88 \end{array}$	-0.10 1.95 2.71 2.09 -7375	$-0.35 \\ -1.2 \\ -2.0 \\ -1.3 \\ 26$	-0.94 -0.68 -0.69 -0.50 17	-3.0 -2.3 -2.5 -1.7	5.0 116 65 7.6 —	$3.0 \\ 4.5 \\ 6.1 \\ 6.2 \\ 32$	-0.04 0.13 0.14 0.14 0.83
EMRI-4 (26.650)	MTAPCIOA	-0.441	-8.77 -1	10.1	-6.03	-3.7	144	950	99	13	-2.3
EMRI-5 (36.173)	MTAPCIOA	17.480	-3.32	5.00	-1.80	0.22	55	62	43	1.8	-1.3

The Mock LISA Data Challenge: from challenge 3 to 4 - I. Mandel for the MLDC task force - GR-19, July 5 2010

E

С

Results : Spin and eccentricity

$\frac{\rm Source}{\rm (SNR_{true})}$	Group	SNR	$\frac{\frac{\Delta M}{M}}{\times 10^{-3}}$	$\stackrel{\frac{\Delta\mu}{\mu}}{\times 10^{-3}}$	$\stackrel{\frac{\Delta\nu_0}{\nu_0}}{\times 10^{-5}}$	$\Delta e_0 \\ \times 10^{-3}$	$\Delta S \ \times 10^{-3}$	$\substack{\frac{\Delta\lambda_{\rm SL}}{\lambda_{\rm SL}}\\\times10^{-3}}$	$\Delta spin$ (deg)	Δsky (deg)	$\frac{\Delta D}{D}$
EMRI-1 (21.673)	MTAPCIOA MTAPCIOA	$21.794 \\ 21.804$	$5.05 \\ -0.06$	$3.29 \\ -0.01$	$\begin{array}{c} 1.61 \\ -0.08 \end{array}$	$-5.1 \\ -0.05$	$-1.4 \\ 0.02$	$-19 \\ 0.54$	$23 \\ 3.5$	$2.0 \\ 1.0$	$0.07 \\ 0.13$
EMRI-9 (32.935)	Good estime high mass c	ution of t ases (1-2	ne spin -3)	for the	$-3.09 \\ 10.1 \\ 9.94 \\ 10.5$	3.8 -33 -32 -33	$0.87 \\ -7.3 \\ -7.2 \\ -7.4$	$12 \\ 250 \\ 250 \\ 240$	$11 \\ 47 \\ 58 \\ 40$	3.73 3.5 3.5 3.5 3.5	3×10^{-3} -0.25 -0.24 -0.25
EMRI- (19.507)	Good estime BabakGair EtfAG	1 tion for	the ecc 1.51 54.0	entricity 1.01 4.88 –	-0.10 1.95 2.71 2.09 7375	$-0.35 \\ -1.2 \\ -2.0 \\ -1.3 \\ 26$	$-0.94 \\ -0.68 \\ -0.69 \\ -0.50 \\ 17$	-3.0 -2.3 -2.5 -1.7	5.0 116 65 7.6 —	$3.0 \\ 4.5 \\ 6.1 \\ 6.2 \\ 32$	$-0.04 \\ 0.13 \\ 0.14 \\ 0.14 \\ 0.83$
EMRI-4 (26.650)	MTAPCIOA	-0.441	-8.77	-10.1	-6.03	-3.7	144	950	99	13	-2.3
EMRI-5 (36.173)	MTAPCIOA	17.480	-3.32	5.00	-1.80	0.22	55	62	43	1.8	-1.3

The Mock LISA Data Challenge: from challenge 3 to 4 - I. Mandel for the MLDC task force - GR-19, July 5 2010

CIERA

Results : Sky position and distance

The Mock LISA Data Challenge: from challenge 3 to 4 - I. Mandel for the MLDC task force - GR-19, July 5 2010

Ε

Challenge 3.4: Cosmic string-cusp bursts in instrumental noise with slightly

randomized noise sources. One-month data set. (33 < SNR < 36)

 $n \ Cosmic-string-cusp \ bursts$

(with *n* Poisson-distributed with mean 5) $f_{\text{max}} = 10^{-3-1} \text{ Hz}, t_C = 0-2^{21} \text{ s}, \text{ SNR} = 10-100$ all instrument noise levels randomized $\pm 20\%$

Participants and methods :

CAM (Cambridge U. & APC) :
 MultiNest [Feroz et al., CQG, 2010].

— CaNoe (Cambridge U. & Northwestern U.): Time-Frequency method CATS [Gair, Mandel, Wen, CQG 25 184031, 2008].

JPLCIT (JPL/CalTech) : MCMC and MultiNest. [Cohen, Cutler, Vallisneri, CQG, 2010]

MTGWAG (Montana State U.) :

21

Parallel tempering MCMC [Shapiro & Cornish, PRD 67 043014, 2009].

The Mock LISA Data Challenge: from challenge 3 to 4 - I. Mandel for the MLDC task force - GR-19, July 5 2010

$$|h_+(f)| = \mathcal{A}f^{-4/3}(1 + (f_{\text{low}}/f)^2)^{-4}, \qquad h_\times = 0,$$

with $\exp(1 - f/f_{\text{max}})$ suppression above f_{max}

Results :

[CaNoe not included no sky localization]

$_{(SNR_{true})}^{source}$	group	$\Delta m sky \ (deg)$	Δt_D (sec)	$\Delta \psi$ (rad)	$\Delta A/A$	SNR	FF_A	FF_E
String-1 (43.46)	CAM CAM JPLCIT JPLCIT MTGWAG	106.9 49.4 34.2 113.7 106.6	$\begin{array}{c} 1.462 \\ 2.331 \\ 1.585 \\ 1.574 \\ 2.071 \end{array}$	$\begin{array}{c} 0.501 \\ 1.065 \\ 3.726 \\ 3.739 \\ 2.600 \end{array}$	$\begin{array}{c} 0.904 \\ 1.128 \\ 0.413 \\ 0.431 \\ 0.745 \end{array}$	43.706 43.520 43.506 43.497 43.287	$\begin{array}{c} 0.99947 \\ 0.99964 \\ 0.99986 \\ 0.99988 \\ 0.99975 \end{array}$	0.99797 0.99591 0.99844 0.99847 0.99565
String-2 (33.6)	CAM JPLCIT JPLCIT MTGWAG	$82.0 \\ 90.5 \\ 45.2 \\ 53.1$	3.683 4.005 3.847 3.223	$\begin{array}{c} 4.846 \\ 4.268 \\ 6.364 \\ 0.158 \end{array}$	$\begin{array}{c} 0.062 \\ 0.282 \\ 0.231 \\ 0.011 \end{array}$	33.690 33.689 33.694 33.696	$\begin{array}{c} 0.99945 \\ 0.99949 \\ 0.99939 \\ 0.99926 \end{array}$	$0.99986 \\ 0.99929 \\ 0.99960 \\ 0.99978$
String-3 (41.42)	CAM CAM CAM JPLCIT JPLCIT MTGWAG	$80.8 \\133.3 \\44.5 \\59.0 \\157.7 \\137.9$	$\begin{array}{c} 1.249 \\ 1.715 \\ 0.763 \\ 1.546 \\ 1.226 \\ 0.980 \end{array}$	3.785 3.257 3.202 3.129 5.614 0.110	$\begin{array}{c} 0.338 \\ 0.238 \\ 0.066 \\ 0.317 \\ 0.220 \\ 0.161 \end{array}$	$\begin{array}{r} 41.326\\ 41.456\\ 41.142\\ 41.315\\ 41.316\\ 41.418\end{array}$	$\begin{array}{c} 0.99073 \\ 0.99388 \\ 0.99700 \\ 0.99554 \\ 0.99717 \\ 0.99327 \end{array}$	$\begin{array}{c} 0.99923 \\ 0.99869 \\ 0.99883 \\ 0.99848 \\ 0.99864 \\ 0.99948 \end{array}$

Results : SNR and Fitting Factor

- All groups successfully recovered all the 3 bursts
- Very good estimation of SNR and Fitting Factor > 0.99 BUT ...

$_{(SNR_{true})}^{source}$	group	Δsky (deg)	Δt_D (sec)	$\Delta \psi$ (rad)	$\Delta A/A$	SNR	FF_A	FF_E
String-1 (43.46)	CAM CAM JPLCIT JPLCIT MTGWAG	$106.9 \\ 49.4 \\ 34.2 \\ 113.7 \\ 106.6$	$\begin{array}{c} 1.462 \\ 2.331 \\ 1.585 \\ 1.574 \\ 2.071 \end{array}$	$\begin{array}{c} 0.501 \\ 1.065 \\ 3.726 \\ 3.739 \\ 2.600 \end{array}$	$\begin{array}{c} 0.904 \\ 1.128 \\ 0.413 \\ 0.431 \\ 0.745 \end{array}$	43.706 43.520 43.506 43.497 43.287	$\begin{array}{c} 0.99947 \\ 0.99964 \\ 0.99986 \\ 0.99988 \\ 0.99975 \end{array}$	$\begin{array}{c} 0.99797 \\ 0.99591 \\ 0.99844 \\ 0.99847 \\ 0.99565 \end{array}$
String-2 (33.6)	CAM JPLCIT JPLCIT MTGWAG	$82.0 \\ 90.5 \\ 45.2 \\ 53.1$	3.683 4.005 3.847 3.223	$\begin{array}{r} 4.846 \\ 4.268 \\ 6.364 \\ 0.158 \end{array}$	$\begin{array}{c} 0.062 \\ 0.282 \\ 0.231 \\ 0.011 \end{array}$	33.690 33.689 33.694 33.696	0.99945 0.99949 0.99939 0.99926	0.99986 0.99929 0.99960 0.99978
String-3 (41.42)	CAM CAM CAM JPLCIT JPLCIT MTGWAG	80.8 133.3 44.5 59.0 157.7 137.9	$\begin{array}{c} 1.249 \\ 1.715 \\ 0.763 \\ 1.546 \\ 1.226 \\ 0.980 \end{array}$	3.785 3.257 3.202 3.129 5.614 0.110	$\begin{array}{c} 0.338 \\ 0.238 \\ 0.066 \\ 0.317 \\ 0.220 \\ 0.161 \end{array}$	$\begin{array}{r} 41.326\\ 41.456\\ 41.142\\ 41.315\\ 41.316\\ 41.418\end{array}$	$\begin{array}{c} 0.99073\\ 0.99388\\ 0.99700\\ 0.99554\\ 0.99717\\ 0.99327 \end{array}$	$\begin{array}{c} 0.99923 \\ 0.99869 \\ 0.99883 \\ 0.99848 \\ 0.99864 \\ 0.99948 \end{array}$

Results : SNR, Fitting Factor and parameters

- All groups successfully recovered all the 3 bursts
- Very good estimation of SNR and Fitting Factor > 0.99 BUT ...
 - ... poor accuracies on parameters due to the character of the waveform.

$_{(SNR_{true})}^{source}$	group	Δsky (deg)	Δt_D (sec)	$\Delta\psi$ (rad)	$\Delta A/A$	SNR	FF_A	FF_E
String-1 (43.46)	CAM CAM JPLCIT JPLCIT MTGWAG	$106.9 \\ 49.4 \\ 34.2 \\ 113.7 \\ 106.6$	$1.462 \\ 2.331 \\ 1.585 \\ 1.574 \\ 2.071$	$\begin{array}{c} 0.501 \\ 1.065 \\ 3.726 \\ 3.739 \\ 2.600 \end{array}$	$\begin{array}{c} 0.904 \\ 1.128 \\ 0.413 \\ 0.431 \\ 0.745 \end{array}$	43.706 43.520 43.506 43.497 43.287	$\begin{array}{c} 0.99947 \\ 0.99964 \\ 0.99986 \\ 0.99988 \\ 0.99975 \end{array}$	$\begin{array}{c} 0.99797 \\ 0.99591 \\ 0.99844 \\ 0.99847 \\ 0.99565 \end{array}$
String-2 (33.6)	CAM JPLCIT JPLCIT MTGWAG	$82.0 \\ 90.5 \\ 45.2 \\ 53.1$	3.683 4.005 3.847 3.223	$\begin{array}{r} 4.846 \\ 4.268 \\ 6.364 \\ 0.158 \end{array}$	$\begin{array}{c} 0.062 \\ 0.282 \\ 0.231 \\ 0.011 \end{array}$	33.690 33.689 33.694 33.696	$\begin{array}{c} 0.99945 \\ 0.99949 \\ 0.99939 \\ 0.99926 \end{array}$	0.99986 0.99929 0.99960 0.99978
String-3 (41.42)	CAM CAM CAM JPLCIT JPLCIT MTGWAG	$80.8 \\133.3 \\44.5 \\59.0 \\157.7 \\137.9$	$1.249 \\ 1.715 \\ 0.763 \\ 1.546 \\ 1.226 \\ 0.980$	3.785 3.257 3.202 3.129 5.614 0.110	$\begin{array}{c} 0.338 \\ 0.238 \\ 0.066 \\ 0.317 \\ 0.220 \\ 0.161 \end{array}$	$\begin{array}{r} 41.326\\ 41.456\\ 41.142\\ 41.315\\ 41.316\\ 41.418\end{array}$	$\begin{array}{c} 0.99073\\ 0.99388\\ 0.99700\\ 0.99554\\ 0.99717\\ 0.99327 \end{array}$	$\begin{array}{c} 0.99923 \\ 0.99869 \\ 0.99883 \\ 0.99848 \\ 0.99864 \\ 0.99948 \end{array}$

The Mock LISA Data Challenge: from challenge 3 to 4 - I. Mandel for the MLDC task force - GR-19, July 5 2010

8

Results : Sky

Short waveform

- \Rightarrow LISA is almost static during the duration of the waveform
 - \Rightarrow No information on direction of the source from LISA motion

[See talk by C. Culter]

Challenge 3.5: Stochastic background

Dataset :

- Istropic signal in instrumental noise with randomized noise levels. 192x2 linearly polarized stochastic pseudo-sources at uniform distribution across the sky.
- Characterized by a single dimensionless quantity: $\Omega_{\rm gw}(f) = \frac{1}{f} \frac{{\rm d} \rho_{\rm gw}(f)}{{\rm d} \log f}$, assumed to be uniform here.

Participants and methods :

— AEIBham (AEI Golm & U. of Birmingham) :

MCMC for analyzing TDI A & E [Robinson & al, CQG 25 184019, 2008]. Run in two frequency bands : (a) 0.1 - 1 mHz , (b) 0.1 - 5 mHz.

MTGWAG (Montana State U.): Parallel tempered MCMC for analyzing TDI A, E & T. Estimation of background and linear combinations of the individual LISA noises.

Challenge 3.5: Stochastic background

Results :

Posterior PDFs for $\ \Omega_{\rm gw}$:

LISA noise levels :

Both groups recovered the injected value by less than 10 % .

Challenge 4

Goal : Global fit problem

Data sets:

- All the sources of challenge 3 in the same data set (same waveform with slightly modified priors)
- 2 years with high (dt = 1.875 s) and low (dt = 15 s) cadence
- 3 versions of each :
 - 2 fractional-frequency-fluctuation data sets simulated by SyntheticLISA & LISACode
 - 1 equivalent-strain data simulated by LISAsimulator.
- [Idea : groups either investigate subsets of sources, or form collaboration to go after the full global fit.

[Dates : Released in November 2009 / Deadline 1st December 2010.

Sources in challenge 4

 \sim 34 \times 10⁶ interacting, \sim 26 \times 10⁶ detached systems

 $a_2/m_2 = 0-1$, with t_c and SNRs as in MLDC 3.2

Poisson(2) systems with $M = 0.95 - 1.05 \times 10^7 M_{\odot}$

Poisson(2) systems with $M = 4.75 - 5.25 \times 10^6 M_{\odot}$

Poisson(2) systems with $M = 0.95 - 1.05 \times 10^6 M_{\odot}$

 $f_{\text{max}} = 10^{-3-1} \text{ Hz}, t_C = 0 - 2^{22} \times 15 \text{ s}, \text{SNR} = 10 - 100$

 $t_{\text{plunge}} = 2^{21} - 2^{22} \times 15 \text{ s}, \text{SNR} = 25 - 50$

 $S_{h}^{\text{tot}} = 0.7 - 1.3 \times 10^{-47} (f/\text{Hz})^{-3} \text{Hz}^{-1}$

 $m_1 = 0.5 - 5 \times 10^6 M_{\odot}, m_1/m_2 = 1 - 10, a_1/m_1 = 0 - 1,$

 $\mu = 9.5-10.5 M_{\odot}, S = 0.5-0.7 M^2, e_{\text{plunge}} = 0.05-0.25,$

Galactic-binary background

An average of six EMRIs

Poisson(20) cosmic-string bursts

4-6 MBH binaries

... including

Galactic binaries

MBH binaries

extension to
 low-mass cases
 (higher frequency)

EMRIs : — unknown number of sources

Cosmic string-cusp bursts : — increase the number of sources with the duration of the data sets

Isotropic stochastic background

Sources in challenge 4

-{ One example (2 years) :

- instrument noise,
- 60 million Galactic binaries,
- 4 MBH binaries,
- 9 EMRIs,
- 15 cosmic-string bursts,
- cosmological stochastic background.

The Mock LISA Data Cha

MLDC 5 & Beyond ...

- Include more realistic noise :
- Non-stationary/Gaussian noises based on laboratory experiments and/or LISAPathfinder models/measurments,
- Gaps, glitches, etc.
- Waveforms :
- MBH binaries:
 - Full inspiral-merger-ringdown waveforms
 - Higher harmonics, eccentricity, ...
- EMRIs:
 - Others models, event rates ...
- Extend variety of signals :
- Other kind of bursts
- Non-isotropic backgrounds and/or a variety of frequency spectra

Any other suggestions ...

Conclusions

Results of challenge 3 : kind of "current status of LISA data analysis" :

- Galactic binaries resolution is approaching theoretical predictions.
- Detection of MBH binaries is good. Non-spinning parameters and spin amplitudes are quite well
 estimated. However, estimation of the other parameters is hard due to degeneracies.
- Detection of EMRIs is good (without any other sources). In general, parameters are estimated well for high-mass, low-frequency sources. More work is needed for low-mass, rapidly-chirping sources, especially in cases of potential source confusion.
 - Cosmic string cusps detection is excellent. But parameter estimation is very poor due to characteristics of the waveforms themselves, in particular the short duration.
 - Stochastic background estimation is good.

Ongoing step : the global fit with the challenge 4.

Future : more realistic noises and waveforms ...

Resources / Further information :

MLDC official website :

astrogravs.nasa.gov/docs/mldc

-[MLDC taskforce wiki : ---- www.tapir.caltech.edu/dokuwiki/listwg1b:home

Mailing lists :

— formulation : lisatools-MLDC@gravity.psu.edu

— participants : lisatools-challenge@gravity.psu.edu

[LISAtools software (including MLDC pipelines) : —— lisatools.googlecode.com

Extra material

What are the MLDCs ?

Goals :

- Demonstrate that we can meet the LISA science and data analysis requirements,
- Common frameworks to measure the performance of analysis algorithms,
- Understand data analysis quantitatively to translate requirements into design decision.

[MLDCs:

- Coordinated, voluntary effort of GW community,
- Periodically issue data sets with noises and GW signals,
- Codes :
 - Generation codes are public,
 - Analysis codes are not shared.

What are the MLDCs ?

Data sets :

- Training data sets : injection parameters are known,
- Challenge data sets : blind.

[Develop a plan for increasing challenges:

- Phase 1 (MLDC 1, 1B) : establish common standard for the LISA orbits, noises and response.
- Phase 2 (MLDC 2, 3) : test recovery and parameter estimation of significant astrophysical sources.
- Phase 3 (MLDC 4, 5) : face global-fit problem; analyze real-world data.

Also develop a plan for analysis of challenges.

