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Gravitational Waves

 Ripples in spacetime:

 Caused by time-varying mass quadrupole moment; GW frequency 
is twice the orbital frequency for a circular, non-spinning binary

 Indirectly detected by Hulse & Taylor: binary pulsar
2
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Gravitational-wave observatories
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LIGO Virgo

GEO-600
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ET
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LISA Binary Sources: EMRIs
 LIGO sensitive @ a few 

hundred Hz
» NS-NS, NS-BH, BH-BH binaries  

 LISA sensitive @ a few mHz
» massive black-hole binaries
» galactic white dwarf (and compact 

object) binaries
» extreme-mass-ratio inspirals of  

WDs/NSs/BHs into SMBHs
– could see tens to hundreds to z~1 

[e.g., Gair et al. 2004; Amaro-
Seoane et al., 2007]
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Extreme Mass Ratio Inspirals
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Exploring the spacetime...
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... taking lots of pictures
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Deviations from Expectations
 Dirty EMRIs: Matter (disks, other compact objects) as an 

astrophysical perturber 
» Gravitational influence of matter [Barausse et al., 2007]
» Hydrodynamic drag [Barausse & Rezolla, 2008]

 GR breaks down
» Test specific alternative theories of gravity [e.g., Sopuerta and Yunes, 

2009]
» Parametrized or phenomenological deviations [e.g., Yunes and Pretorius, 

2009; IM et al., in prep.]
» Massive gravitons [e.g., Will 1997, Babak & Grishchuk 2003, Berti et al. 

2005]
 GR is correct, but the central objects are not black holes

» Non-vacuum solutions of Einsteinʼs equations (boson stars, gravistars)
» Vacuum solutions that violate some cherished assumptions (e.g., naked 

singularities)
8



COSPAR-10: July 20, 2010

Testing the “no-hair” theorem
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Testing the no-hair theorem
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Testing the no-hair theorem?

Stationary, vacuum, asymptotically flat spacetimes 
in which the singularity is fully enclosed by a 
horizon with no closed timelike curves outside 
the horizon are described by the Kerr metric
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Do black holes have hair?

Ryan’s theorem [1995]: GWs from nearly circular, 
nearly equatorial orbits in stationary, axisymmetric 
spacetimes encode all of the spacetime multipole 
moments... in principle
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Bumpy black holes
 Perturbed black holes

» Perturbed Schwarzschild [Collins & Hughes, 2004]
» Perturbed Kerr [Vigeland & Hughes, 2009]
» Quasi-Kerr with slow spins [Glampedakis & Babak, 

2006]
» Kludge pN term due to mass quadrupole [Barack & 

Cutler, 2007]
» Ringdown modes [Berti, Cardoso, Will, 2006]

 Exact solution of Einsteinʼs equations

13

Manko-Novikov spacetime, an exact solution of Einstein’s equations:

Search for observable imprints of a “bumpy” spacetime, such as 
deviations from the full set of isolating integrals (energy, angular 
momentum, Carter constant) in Kerr [Gair, Li, IM, 2009, PRD 77:024035] 
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The emergence of chaos
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Solve the geodesic equation       
and study Poincare maps:

- Plot dρ/dt vs. ρ for z=z0 crossings
- Phase space plots should be closed 
curves for all z0 iff there is a third 
isolating integral [Carter constant]

Newtonian+hexadecapole:

M2=10 M0;  M4=400 M0
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All is regular in “bumpy” spacetimes

15

that traversed the neck more than once. Further adjustment of the orbital parameters causes
the neck to widen and eventually disappear. At that stage, most of the orbits appear to be
regular, but orbits that pass very close to the inner edge of the merged region (i.e., close to
the CTC zone) have not been fully investigated.

An alternative explanation of these results [19] is that the geodesic equations are nu-
merically unstable in the inner region, and therefore small numerical round-off errors in the
integration routines are driving the orbits away from their true values. Once again, this
distinction is not relevant observationally. An astrophysical system harboring an EMRI will
not be isolated. The gravitational perturbations from distant stars etc. will serve the same
role in perturbing the orbits as numerical errors might on a computer. The end result —
that the orbit is apparently ergodic — is the same.
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FIG. 6: Poincare map for a geodesic in the outer region of Fig. 4.

2. Frequency Component Analysis

The above conclusions are supported by a frequency-domain analysis of the ρ and z
motion in the two regions. The absolute values of Fourier transforms of ρ(t) and z(t) are
plotted in Figures 8 and 9. Fig. 9 shows an absence of clearly identifiable frequency peaks
for geodesics in the inner region, a result consistent with full-blown chaos. By contrast,
Fig. 8 shows discrete frequency peaks in the outer region. Generally such frequency peaks,
corresponding to harmonics of a few fundamental frequencies, occur in problems with a full
set of isolating integrals. We find that the frequency components measured for the ρ and z
motion in the outer region can be represented as low order harmonics of two fundamental
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Or is it?...

16
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Effective potential                                       defines allowed bound orbits
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Itʼs a mad, mad, mad, mad geodesic
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Itʼs a mad, mad, mad, mad geodesic
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FIG. 7: Poincare map for a geodesic in the inner region of Fig. 4.

frequencies at a high level of precision (1 part in 107 for the first ∼ 10 harmonics). This
multi-periodicity of the geodesics implies that the gravitational waveforms will also be multi-
periodic. Indeed, we find that an approximate gravitational waveform, constructed using
a semi-relativistic approximation for the gravitational-wave emission (as used to construct
Kerr EMRI waveforms in [20]), is also tri-periodic (the third frequency arises from the φ
motion since the observer is at a fixed sky location). The absolute value of the Fourier
transform of the h+(t) component of this gravitational waveform is also plotted in Fig. 8
and is clearly multi-periodic. This periodicity has important consequences for data analysis
and parameter extraction.

3. Comparison to Other Results

Our results are consistent with previous work by other authors who have found chaotic
geodesic motion in various spacetimes. Generally, chaotic motion only occurs in the strong-
field region close to the central object, and for a limited range of geodesic parameters. As
an example, Guéron and Letelier [12] found chaos in a prolate Erez-Rosen spacetime, which
represented a deformation of a Schwarzschild black hole. They demonstrated that, for a
particular value of the energy and angular momentum, when the deformation parameter had
a value k2 = −5, there was a single allowed region of bounded motion, but for k2 = −5.02
the region split into two separate regions. After the split, orbits in the inner region appeared
chaotic while those in the outer region appeared regular. For the merged region, orbits that
passed into the inner part also appeared ergodic while those that were purely in the outer
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Order and Chaos, side by side

18
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FIG. 4: Effective potential for geodesic motion around a bumpy black hole with χ = 0.9, q = 0.95,

E = 0.95, and Lz = 3M . The thick dotted curves indicate zeros of the effective potential. The

trajectory of a typical geodesic in the outer region is shown by a thin curve. The regular pattern of

self-intersections of the geodesic projection onto the ρ−z plane indicates (nearly) regular dynamics.

If |q| is increased from the value shown in Figure 4, the two regions of bound motion
eventually merge. When this first occurs, the “neck” joining the regions is extremely narrow.
Geodesics exist which can pass through the neck, but this requires extreme fine tuning. As
|q| is further increased, the neck gradually widens and eventually disappears. At that stage,
the single allowed region for bound orbits has a similar shape to the outer region of Figure 4.

These general properties of the effective potential seem to be common to all spacetimes
with q > 0 and χ "= 0. More relevant for the EMRI problem is to fix q and χ and to vary
E and Lz . For E = 1 and sufficiently large Lz, there are two regions of allowed motion
bounded away from the origin, in addition to the plunging zone connected to the singularity
at ρ = 0, |z| ≤ 1. The outermost of the allowed regions stretches to infinity and contains
parabolic orbits. The inner region of bounded motion is the analogue of the inner bound
region described above and lies very close to the central object. If the angular momentum
is decreased, while keeping E = 1, the two non-plunging regions get closer together and
eventually merge to leave one allowed region that stretches to infinity. For fixed E < 1
the behavior is qualitatively the same, except that for Lz $ M there is no outer region
(there is a maximum allowed angular momentum for bound orbits of a given energy, as in
the Kerr spacetime). As Lz is decreased, the outer region for bound motion appears and
then eventually merges with the inner region. Decreasing Lz further eventually causes the

11
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Other signs of non-Kerr spacetimes
 Location and character of ISCO

 Periapsis and orbital-plane precession

19
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FIG. 11: Properties of the equatorial ISCO in spacetimes with χ = 0, as a function of q. We show

the ρ coordinate of the ISCO (left panel) and the dimensionless frequency of the orbit at the ISCO

(right panel). As described in the text, the ISCO radius has three branches, depending on whether

it is determined by one of the two branches of radial instability or the branch of vertical instability.

These branches are indicated separately in the diagram. For values of q where all three branches

are present, the dashed line denotes the “OSCO” and the dotted line denotes ρ̃ISCO as discussed

in the text. Allowed orbits lie above the curve in the left panel, and below the curve in the right

panel.

comparatively small deviations from Kerr.

V. PERIAPSIS AND ORBITAL-PLANE PRECESSIONS

In Section III we saw that astrophysically relevant orbits in the Manko-Novikov space-
time are multi-periodic to high precision. In such cases, there is no smoking-gun signature
that indicates the presence of “bumpiness” in the spacetime. Instead, the imprint of the
spacetime bumpiness will be observationally apparent in the location of the last stable orbit,
as discussed in the previous section, and in the following ways: (1) in the three fundamen-
tal frequencies of the gravitational waves generated while the inspiraling object is on an
instantaneous geodesic orbit; (2) in the harmonic structure of the gravitational-wave emis-
sion, i.e., the relative amplitudes and phases of the various harmonics of the fundamental
frequencies; and (3) in the evolution of these frequencies and amplitudes with time as the
object inspirals. A full analysis of the accuracies that could be achieved in observations
would involve computing gravitational waveforms in the bumpy spacetimes, performing a
Fisher-Matrix analysis to account for parameter correlations, and comparing to a similar
analysis for Kerr. That is beyond the scope of this paper. However, we can examine the
first of these observational consequences by comparing the fundamental frequencies between
the bumpy and Kerr spacetimes.

The complication in such an analysis is to identify orbits between different spacetimes.
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FIG. 17: Difference between periapsis precessions in a bumpy spacetime with χ = 0 and the

Schwarzschild spacetime, ∆pρ(Ωφ, q) = pρ(Ωφ, q) − pρ(Ωφ, q = 0).

the precession (see Eq. (B15) in the Appendix) then gives
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In this kind of expansion the multipole moments again contribute at all orders. However,
provided the initial frequency Ω0 " 1, the dominant piece of the constant term, b0, is
(MΩ0)

2

3 , so this term can be used to estimate M . Similarly, the dominant piece of 2b0 − 3b1

is 4χ (MΩ0), so this can be used to estimate χ, and that estimate of χ can be used to improve

the estimate of M from b0. The dominant piece of b0 − b1 + 3b2 is (9 + χ2 + q) /2 (MΩ0)
4

3 ,
so this can be used to estimate the excess quadrupole moment q and so on. In the same
way, if an eccentric inspiral is observed in a regime where the initial frequency is small (and
hence the frequency at capture was also small), we can use the same type of expansion and
use combinations of the coefficients to successively extract each multipole moment and the
initial eccentricity. To do this requires an expansion of e2 − e2

0 as a function of Ωφ/Ω0 − 1.
The necessary derivatives de2/d(MΩφ) are known in the weak-field, and to lowest order
in the multipoles (see, for example, reference [22]). However, this calculation is somewhat
involved, so we leave it for a future paper.
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Kerr spacetime with χ = 0.9, ∆pz(Ωφ, q) = pz(Ωφ, q) − pz(Ωφ, q = 0).

from large distances. Most astrophysically relevant orbits are regular and appear to possess
an approximate fourth integral of the motion, and the orbits are tri-periodic to high accu-
racy. The deviations of the central body from Kerr then manifest themselves only in the
changes in the three fundamental frequencies of the motion and the relative amplitude of
the different harmonics of these frequencies present in the gravitational waves. For nearly
circular, nearly equatorial orbits, the dependence of the precession frequencies on the orbital
frequency is well fit by a combination of a weak field expansion that encodes the multipole
moments at different orders, plus a term that diverges as the innermost stable circular orbit
is approached. The frequency of the ISCO and its nature (whether it is defined by a radial
or vertical instability) is another observable signature of a non-Kerr central object.

To derive these results, we have focussed on a particular family of spacetimes due to
Manko and Novikov [8]. However, we expect the generic features of the results in the weak
field and as the ISCO is approached to be true for a wide range of spacetimes. Chaos has been
found for geodesic motion in several different metrics by various authors [9, 10, 11, 12, 13].
In all cases, however, the onset of chaos was qualitatively similar to what we found here
— it occurred only very close to the central object, and for a very limited range of orbital
parameters. The conclusion that gravitational waves from ergodic EMRIs are unlikely to be
observed is thus probably quite robust.

Precessions for spacetimes that deviate from the Kerr metric have also been considered
by several authors [2, 6, 7]. Our results agree with this previous work in the weak-field as it
should. However, the results in the present paper are the first that are valid in the strong-
field since previous work was either based on a weak-field expansion [2] or a perturbative
spacetime [6, 7]. The main feature of the precessions in the strong-field — the divergence of
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LISA Data: An embarrassment of riches

20

[Arnaud et al., 2007, CQG 24 S551]
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EMRI detection and analysis
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[Gair, IM, Wen, 2008, CQG 25 184031]

Need innovative search techniques to separate many overlapping 
signals: Markov-Chain Monte Carlo, MultiNest, time-frequency searches

h(t) = h(M1, M2, !S1, !S2, θ, φ, DL, e, ...; t) 17 parameters
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Intermediate-mass-ratio Inspirals
Can measure mass 
quadrupole moment to 
around 20% of Kerr value 
with Advanced LIGO [Brown 
et al., PRL 99, 201102]
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Waveforms are a problem: 
both post-Newtonian and self-
force waveforms currently fail 
in the intermediate regime [IM 
and Gair, 2005, PRD 72 084025]
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Summary
 Extreme- or intermediate- mass-ratio inspirals are great 

probes of strong gravity
 They give us an opportunity to test General Relativity
 Focus on null-hypothesis tests: are the massive, compact 

objects consistent with being Kerr black holes?
 Several smoking guns are possible, from the emergence 

of chaos to changes in the frequencies and characteristics 
of the ISCO and precessions
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