# Unravelling Binary Evolution from Gravitational-Wave Signals and Source Statistics

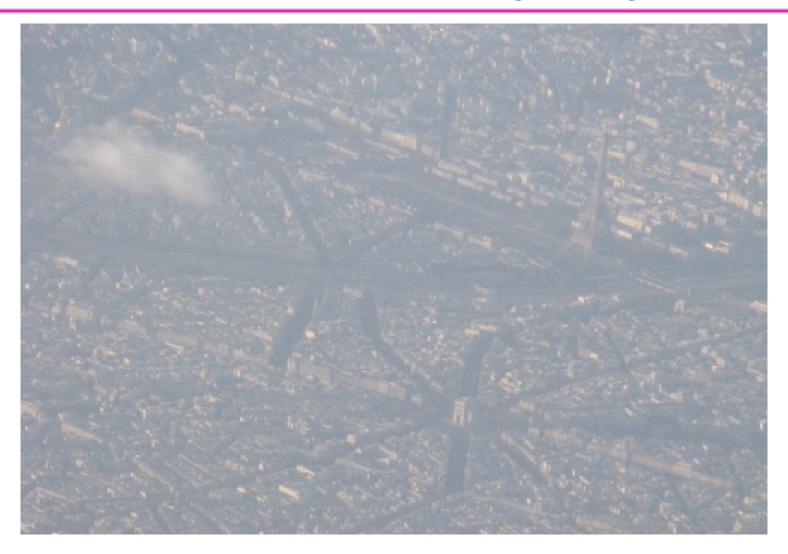
Ilya Mandel (Northwestern University)

with Vicky Kalogera, Richard O'Shaughnessy with thanks to members of the CBC group of the LVC for feedback

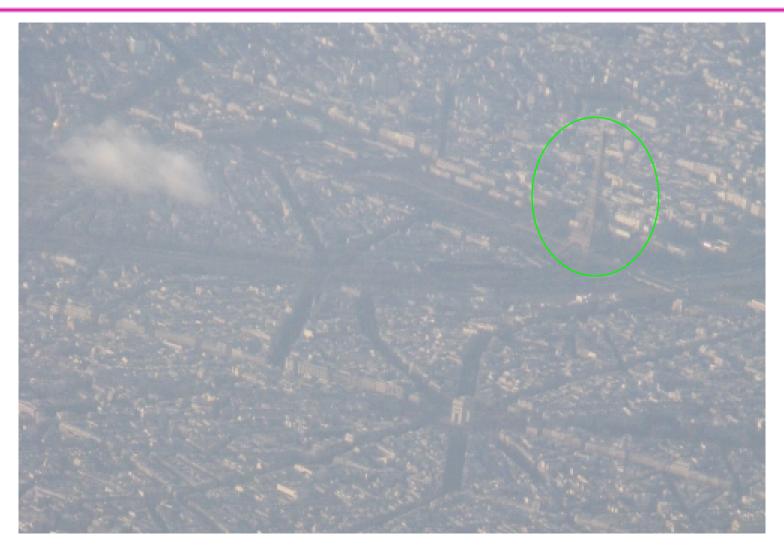
LIGO-G0900690

July 16, 2009

MG12, Paris


#### Astrophysics to GW Event Rates



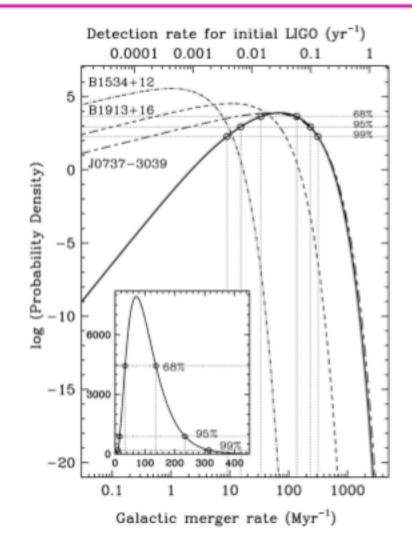

# **Unraveling Binary Evolution**



# ...but on a hazy day



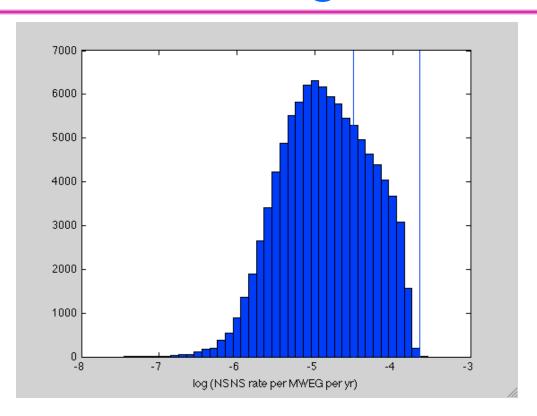
# ...but on a hazy day




#### Rates predictions

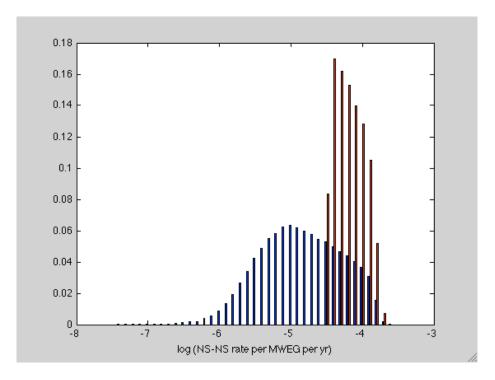
- All astrophysical rates estimates depend on limited observations and/or models with many ill-understood parameters, and are still significantly uncertain at present
- Ground-based interferometric detectors (LIGO, Virgo, GEO 600, AIGO, LCGT) are sensitive @ tens/hundreds
   Hz: ideal for detecting NS-NS, NS-BH, BH-BH binaries
- Coalescence rate predictions from:
  - » extrapolation from observed binary pulsars
  - » simulations of isolated binary evolution
  - » dynamical-formation models
  - » intermediate-mass-black holes?
- Instrument sensitivity and conversion to detection rates

#### Extrapolation from BNS observations


- Best NS-NS merger-rate estimates come from observed Galactic binary pulsars
- Small-number statistics (~10 total, ~4 merging in 15 Gyr)
- Selection effects (pulsar luminosity distribution)
- [Kim et al., 2003 ApJ 584 985, 2006 astro-ph/0608280; Kalogera et al., 2004, ApJ 601 L179]

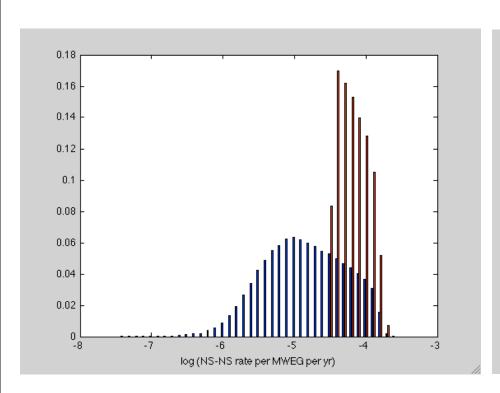


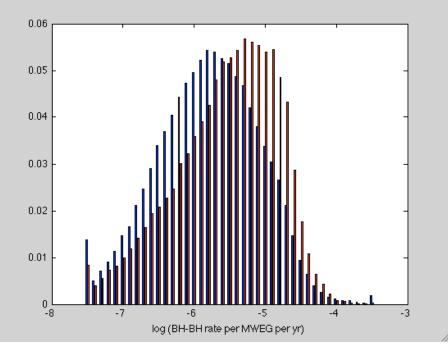
# Population synthesis models


- No observed NS-BH or BH-BH binaries
- Predictions based on population-synthesis models for isolated binary evolution with StarTrack [Belczynski et al., 2005, astro-ph/0511811] or similar codes
- Thirty poorly constrained parameters
- [O'Shaughnessy et al., 2005 ApJ 633 1076, 2008 ApJ 672 479] vary seven most important parameters:
  - 1. power-law index in binary mass ratio
  - 2, 3, 4. supernovae kicks described by two independent Maxwellians and their relative contribution
  - 5. strength of massive stellar wind
  - 6. common-envelope efficiency
  - 7. fractional mass retention during nonconservative mass transfer

# Constraining models

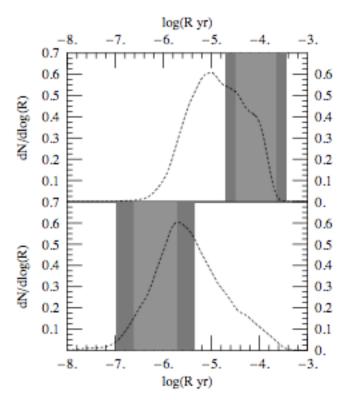



- Add constraints from observations; binary pulsars: NS-NS, NS-WD, supernovae, etc.
- Average over models that satisfy constraints

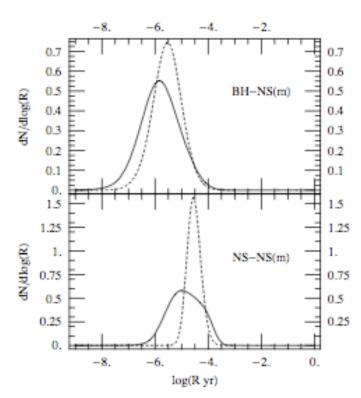

# Effect of adding constraints, 1



Single constraint satisfaction - no accounting for sampling uncertainties or model fitting errors


### Effect of adding constraints, 1






Single constraint satisfaction - no accounting for sampling uncertainties or model fitting errors

# Effect of adding constraints, 2



Constraints from observed binary pulsars



BH-NS and NS-NS rate/MWEG predictions

[O'Shaughnessy et al., 2008, ApJ 672 479]

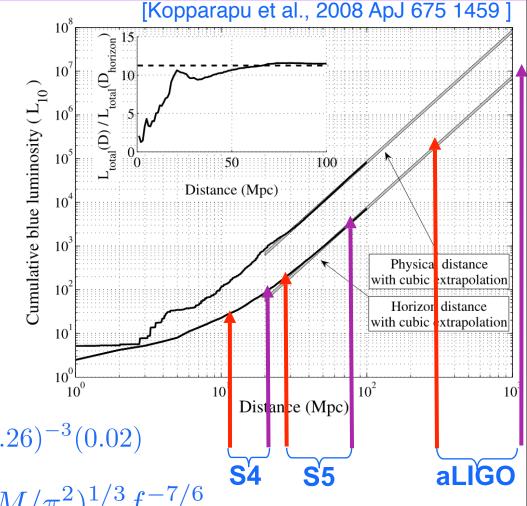
#### Rates per Galaxy

| Source                                            | $R_{ m low}$ | $R_{ m re}$ | $R_{ m pl}$ |
|---------------------------------------------------|--------------|-------------|-------------|
| $\overline{NS	ext{-}NS\;(L_{10}^{-1}\;Myr^{-1})}$ | 0.6          | 50          | 500         |
| $NS	ext{-}BH\ (L_{10}^{-1}\ Myr^{-1})$            | 0.03         | 2           | 60          |
| $BH	ext{-}BH\ (L_{10}^{-1}\ Myr^{-1})$            | 0.006        | 0.2         | 20          |

- In simplest models, coalescence rates are proportional to stellar-birth rates in nearby spiral galaxies, so we quote rates in units of L<sub>10</sub> (blue-light luminosity of 10<sup>10</sup> Suns)
- However, this does not properly account for delay of coalescence relative to star formation (esp. elliptical galaxies)

#### LIGO sensitivity

$$\dot{N} = R \times N_G$$
  
(merger rate) =  
(merger rate per L10) \*  
(Ng in L10's)


$$\rho \equiv \sqrt{4 \int_0^{f_{\rm ISCO}} \frac{|\tilde{h}(f)|^2}{S_n(f)} df}$$

$$\rho(D_{\rm horizon}) \equiv 8$$

1/2.26 -- sky and orientation averaging;  $0.02 L_{10}$  per Mpc<sup>3</sup>

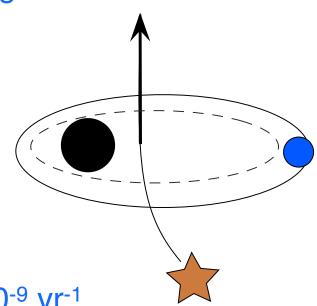
$$N_G (L_{10}) = \frac{4}{3}\pi \left(\frac{D_{\text{horizon}}}{\text{Mpc}}\right)^3 (2.26)^{-3} (0.02)$$

$$|\tilde{h}(f)| = 2/D * (5\mu/96)^{1/2} (M/\pi^2)^{1/3} f^{-7/6}$$



#### **Detection Rates**

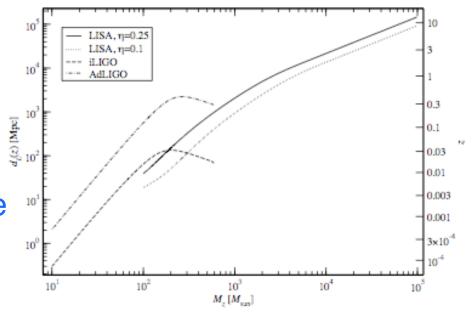
| IFO Source |                               | $\dot{N}_{ m re}$                                    | $\dot{N}_{ m pl}$                                     |
|------------|-------------------------------|------------------------------------------------------|-------------------------------------------------------|
|            | $\mathrm{yr}^{-1}$            | $\mathrm{yr}^{-1}$                                   | $yr^{-1}$                                             |
| NS-NS      | $2 \times 10^{-4}$            | 0.02                                                 | 0.2                                                   |
| NS-BH      | $9 \times 10^{-5}$            | 0.006                                                | 0.2                                                   |
| BH-BH      | $2 \times 10^{-4}$            | 0.009                                                | 0.7                                                   |
| NS-NS      | 0.4                           | 40                                                   | 400                                                   |
| NS-BH      | 0.2                           | 10                                                   | 300                                                   |
| BH-BH      | 0.5                           | 20                                                   | 1000                                                  |
|            | NS-NS NS-BH BH-BH NS-NS NS-BH | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |


July 16, 2009 MG12, Paris 13

### **Dynamical Formation**

- BH-BH mergers in dense black-hole subclusters of globular clusters
  - » [O'Leary, O'Shaughnessy, Rasio, 2007 PRD 76 061504]
  - » Predicted rates 10<sup>-4</sup> to 1 per Mpc<sup>3</sup> per Myr
  - » Plausible optimistic values could yield 0.5 events/year for Initial LIGO
- BH-BH scattering in galactic nuclei with a density cusp caused by a massive black hole (MBH)
  - » [O'Leary, Kocsis, Loeb, 2009 arXiv:0807.2638]
  - » Based on a number of optimistic assumptions
  - » Predicted detection rates of 1 to 1000 per year for Advanced LIGO
- BH-BH mergers in nuclei of small galaxies without an MBH
  - » [Miller and Lauburg, 2009 ApJ 692 917]
  - » Predicted rates of a few X 0.1 per Myr per galaxy
  - » Tens of detections per year with Advanced LIGO

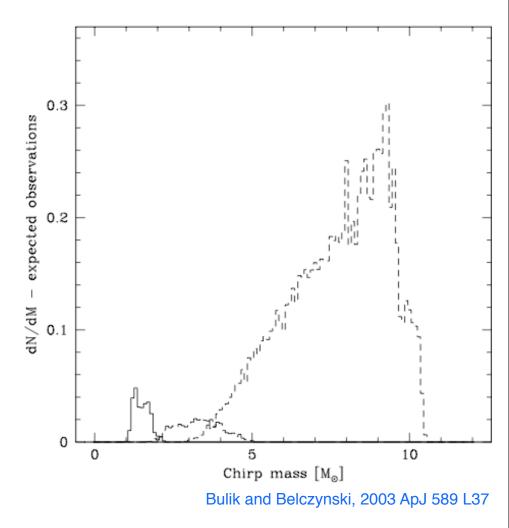
#### Inspirals into IMBHs


- Intermediate-mass-ratio inspirals of compact objects (1.4 solar-mass NSs or 10 solar-mass BHs) into intermediate-mass black holes in globular clusters
- Dominant mechanism:
   IMBH swaps into binaries,
   3-body interactions tighten
   IMBH-CO binary, merger
   via GW radiation reaction
   [IM et al., 2008 ApJ 681 1431]



- Rate per globular cluster: few x 10-9 yr-1
- Predicted Advanced LIGO event rates between 1/few years and ~30/year

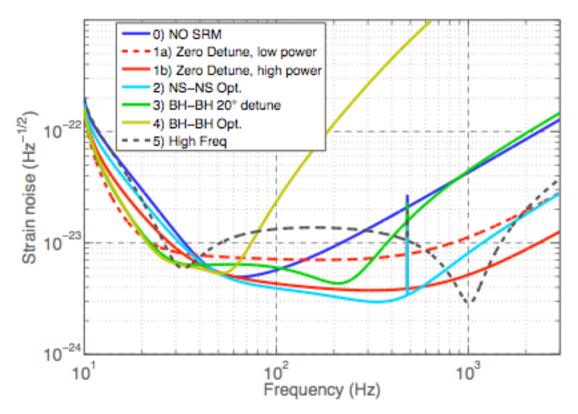
#### Inspirals of two IMBHs


- Two very massive stars could form in globular clusters with sufficient binary fraction, then grow through runaway collision to form two IMBHs in same GC
- Rates of order 1/year are possible for Advanced LIGO [Fregeau et al., 2006 ApJ 646 L135]
- IMBH binaries could also form when two GCs merge [Amaro-Seoane and Freitag, 2006, ApJ 653 L53]



#### Binary characteristics: masses

Chirp-mass predictions 
$$\mathcal{M}_c = \frac{M_1^{3/5} M_2^{3/5}}{(M_1+M_2)^{1/5}}$$


- » Early predictions from [Bulik and Belczynski, 2003 ApJ 589 L37]
- » BH-BH chirp mass is typically in the [5,10] solar-mass range for most systems that merge in less than 10 Gyr [O'Shaughnessy, Kalogera, Belczynski, 2009, in prep.]
- » Value can change depending on applied constraints, etc.; e.g., factor of 1.3 for BH-NS between [O'Shaughnessy et al., 2005 ApJ 633 1076 and ibid., 2008, ApJ 672 479]

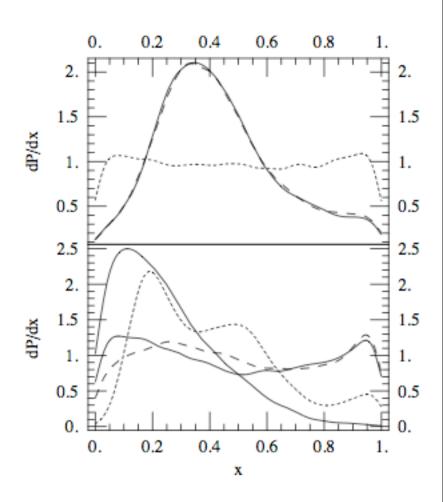


July 16, 2009 MG12, Paris 17

#### Informing GW searches with Astro, 1

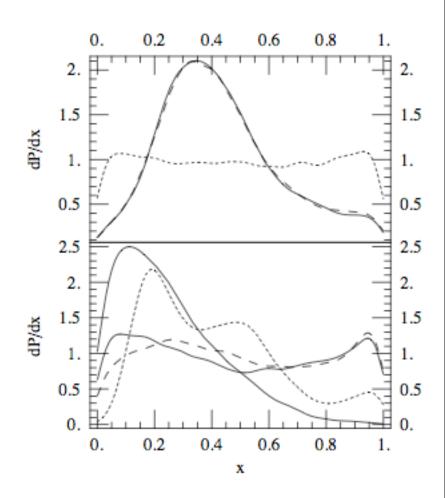
Selecting IFO configuration based on astro predictions




Public LIGO document T-070247

#### Informing GW searches with Astro, 2

- Rates predictions can help to determine which searches we should focus resources on
- Choice of waveform templates for detection:
  - » Example 1: Low chirp masses may make merger/ringdown waveforms unnecessary for most stellar-mass BH-BH mergers; however, searches with the full inspiral-merger-ringdown waveforms informed by numerical relativity will be necessary for GWs from IMBH sources
  - » Example 2: Spin is important for accurate parameter estimation of BH-NS and BH-BH binaries
  - Example 3: Could cut down on template number (and reduce FAR) for spinning BH-NS template banks since very massive BHs will be hard to spin up [Pan et al., 2004, PRD 69 104017]

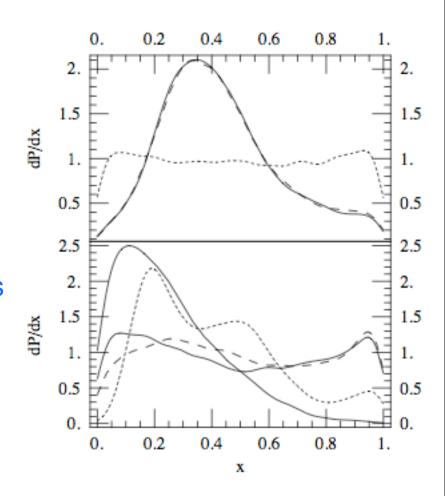

#### Astrophysics with GW searches

 Constraints on astrophysical parameters from existing electromagnetic observations [O'Shaughnessy et al., 2008 ApJ 672 479]:

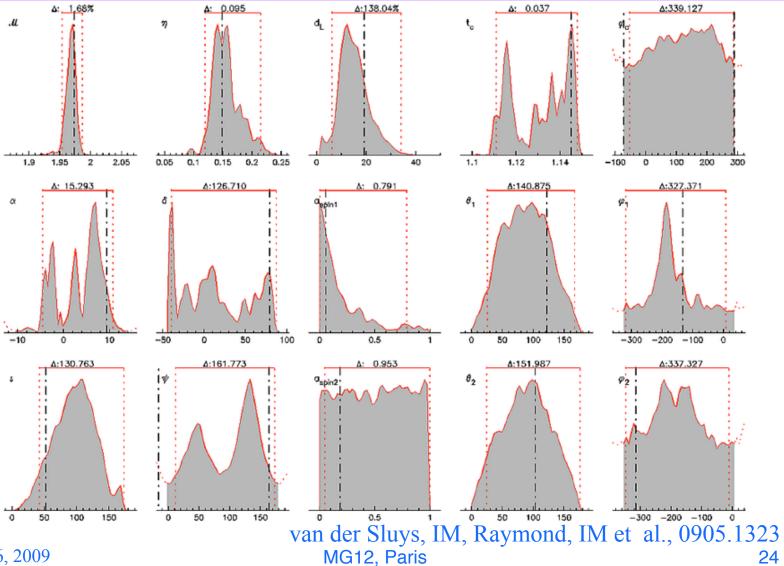


#### Astrophysics with GW searches

- Constraints on astrophysical parameters from existing electromagnetic observations [O'Shaughnessy et al., 2008 ApJ 672 479]:
- Observed GW event rates can be compared with models to determine important astrophysical parameters;



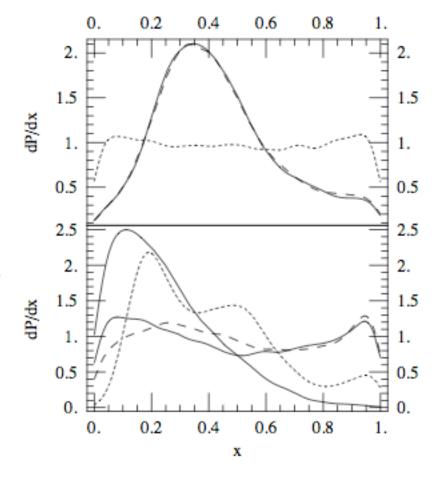

#### Rates to parameter constraints - theory


- Let f(R) be the measured rates distribution
- The constrained distribution of astrophysical parameters is given by Bayes Rule:  $p(\vec{\Theta}|f(R)) = \frac{p(f(R)|\vec{\Theta})p(\vec{\Theta})}{p(f(R))}$
- For a given choice of model parameters, population synthesis codes coupled to information about galaxy distributions and detector sensitivity provide a distribution of the detectable event rate,  $p(\hat{R}|\vec{\Theta})$
- If an actual rate R is measured, then the likelihood that the model with a given choice of parameters fits the measurement is  $\mathcal{L}(R|\vec{\Theta}) = e^{-\frac{|R-\hat{R}|^2}{2\sigma_R^2}}$
- $\text{Then } p(f(R)|\vec{\Theta}) = \int d\hat{R} \mathcal{L}(R|\vec{\Theta}) p(\hat{R}|\vec{\Theta}) \\ \text{MG12, Paris}$

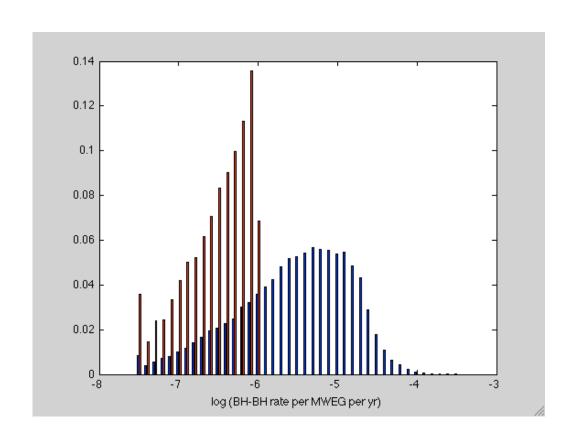
#### Astrophysics with GW searches

- Constraints on astrophysical parameters from existing electromagnetic observations [O'Shaughnessy et al., 2008 ApJ 672 479]:
- Observed GW event rates can be compared with models to determine important astrophysical parameters;
- Could match measured mass distributions, etc. to models (requires accurate parameter determination)

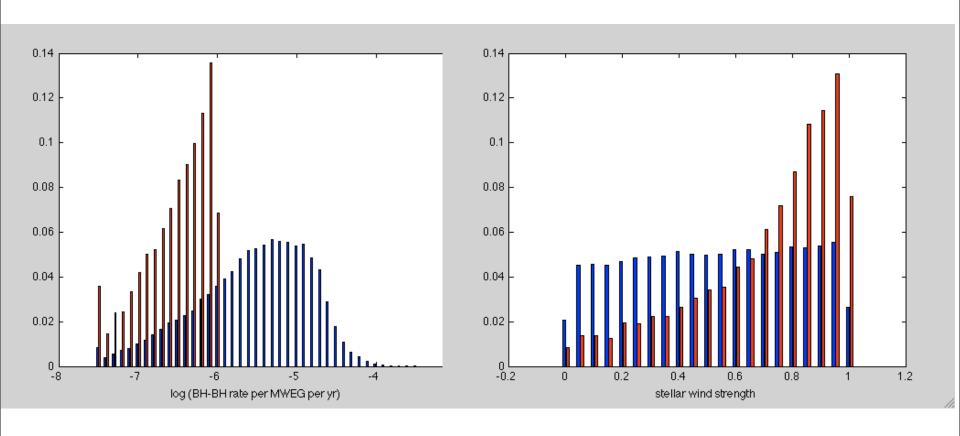



#### **Accurate Parameter Estimation**




July 16, 2009

# Astrophysics with GW searches

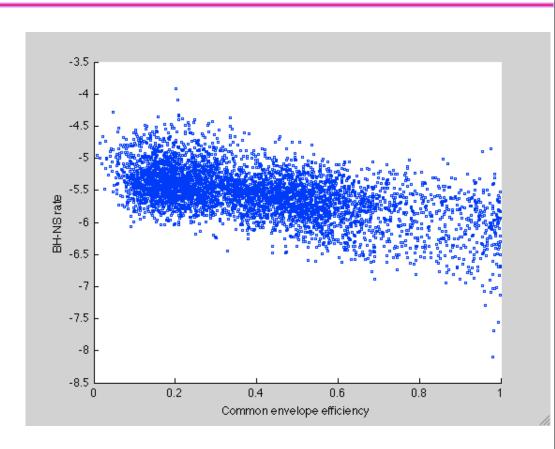

- Constraints on astrophysical parameters from existing electromagnetic observations [O'Shaughnessy et al., 2008 ApJ 672 479]:
- Observed GW event rates can be compared with models to determine important astrophysical parameters;
- Could match measured mass distributions, etc. to models (requires accurate parameter determination)
- As detector sensitivity improves, even upper limits can be useful in constraining parameter space for birth kicks, common-envelope efficiency, winds, etc.



#### Constraints from upper limits - example



#### Constraints from upper limits - example




# Common Envelope Efficiency

| Double Compact Object Formation | Channels |  |
|---------------------------------|----------|--|
|---------------------------------|----------|--|

|           |                             | Double Compact Object Formation Channels                                                              |
|-----------|-----------------------------|-------------------------------------------------------------------------------------------------------|
| Formation | Relative                    |                                                                                                       |
| Channel   | ${\rm Efficiency}^{\alpha}$ | Evolutionary History $^{\beta}$                                                                       |
| NSNS:01   | 20.3 %                      | NC:a $\rightarrow$ b, SN:a, HCE:b $\rightarrow$ a, HCE:b $\rightarrow$ a, SN:b                        |
| NSNS:02   | 10.8 %                      | NC:a $\rightarrow$ b, SCE:b $\rightarrow$ a, NC:a $\rightarrow$ b, SN:a, HCE:b $\rightarrow$ a, SN:b  |
| NSNS:03   | 5.5 %                       | SCE:a $\rightarrow$ b, SN:a, HCE:b $\rightarrow$ a, HCE:b $\rightarrow$ a, SN:b                       |
| NSNS:04   | 4.0 %                       | NC:a $\rightarrow$ b, SCE:b $\rightarrow$ a, SCE:b $\rightarrow$ a, SN:b, HCE:a $\rightarrow$ b, SN:a |
| NSNS:05   | 3.2 %                       | DCE:a $\rightarrow$ b, SCE:a $\rightarrow$ b, SN:a, HCE:b $\rightarrow$ a, SN:b                       |
| NSNS:06   | 2.5 %                       | SCE:a $\rightarrow$ b, SCE:b $\rightarrow$ a, NC:a $\rightarrow$ b, SN:a, HCE:b $\rightarrow$ a, SN:b |
| NSNS:07   | 2.2 %                       | NC:a $\rightarrow$ b, NC:a $\rightarrow$ b, SN:a, HCE:b $\rightarrow$ a, HCE:b $\rightarrow$ a, SN:b  |
| NSNS:08   | 2.0 %                       | NC:a $\rightarrow$ b, DCE:b $\rightarrow$ a, SN:a, HCE:b $\rightarrow$ a, SN:b                        |
| NSNS:09   | 2.0 %                       | DCE:a $\rightarrow$ b, DCE:a $\rightarrow$ b, SN:a, SN:b                                              |
| NSNS:10   | 1.6 %                       | NC:a $\rightarrow$ b, SCE:b $\rightarrow$ a, SN:b, HCE:a $\rightarrow$ b, SN:a                        |
| NSNS:11   | 1.5 %                       | NC:a $\rightarrow$ b, SCE:b $\rightarrow$ a, DCE:b $\rightarrow$ a, SN:a, SN:b                        |
| NSNS:12   | 1.5 %                       | NC:a $\rightarrow$ b, SCE:b $\rightarrow$ a, DCE:a $\rightarrow$ b, SN:a, SN:b                        |
| NSNS:13   | 1.0 %                       | DCE:a $\rightarrow$ b, SN:a, HCE:b $\rightarrow$ a, SN:b                                              |
| NSNS:14   | 3.0 %                       | all other                                                                                             |
|           |                             |                                                                                                       |
| BHNS:01   | 4.5 %                       | $NC:a\rightarrow b$ , $SN:a$ , $HCE:b\rightarrow a$ , $SN:b$                                          |
| BHNS:02   | 1.6 %                       | NC:a $\rightarrow$ b, SCE:b $\rightarrow$ a, SN:a, SN:b                                               |
| BHNS:03   | 1.3 %                       | SCE:a $\rightarrow$ b, SN:a, HCE:b $\rightarrow$ a, NC:b $\rightarrow$ a, SN:b                        |
| BHNS:04   | 2.0 %                       | all other                                                                                             |
|           |                             |                                                                                                       |
| BHBH:01   | 17.7 %                      | NC:a $\rightarrow$ b, SN:a, HCE:b $\rightarrow$ a, SN:b                                               |
| BHBH:02   | 10.5 %                      | NC:a $\rightarrow$ b, SCE:b $\rightarrow$ a, SN:a, SN:b                                               |
| BHBH:03   | 1.4 %                       | all other                                                                                             |
|           |                             |                                                                                                       |

[Kalogera et al., 2007, Physics Reports 442, 75] July 16, 2009



Also possible to constrain commonenvelope model with LISA observations: [Belzcynski, Benacquista, Bulik, 2008, arXiv:0811.1602]

MG12, Paris

#### Conclusion

- Current understanding of coalescence rates and properties of compact binaries is imperfect
- Advanced LIGO is likely to see NS-NS, NS-BH, BH-BH coalescences; tens or more coalescences may be seen according to some models, including dynamical formation
- Chirp masses for binaries formed via isolated evolution are likely ≤ 10 solar masses; rapid spins are possible
- Improved understanding of astrophysics can help GW search by informing detector configuration, template family
- GW detections and upper limits for compact-object coalescences will allow us to constrain the astrophysical parameters