Gravitational Waves from Binaries

(Image: MPI for Gravitational Physics / W.Benger-ZIB)

Ilya Mandel (NSF AAPF, CONTRACTOR OCTOBER 19, 2009 Harvard-Smithsonian CfA

Gravitational Waves

• Ripples in spacetime:

- Caused by time-varying mass quadrupole moment; GW frequency is twice the orbital frequency for a circular, non-spinning binary
- Indirectly detected by Hulse & Taylor [binary pulsar]
- Huge amounts of energy released: 5% of mass-energy of a supermassive black hole binary is comparable to the electromagnetic radiation emitted from an entire galaxy over the age of the universe!

CfA: October 19, 2009

Gravitational Waves

• Ripples in spacetime:

Inspiral sound borrowed from Scott Hughes

- Caused by time-varying mass quadrupole moment; GW frequency is twice the orbital frequency for a circular, non-spinning binary
- Indirectly detected by Hulse & Taylor [binary pulsar]
- Huge amounts of energy released: 5% of mass-energy of a supermassive black hole binary is comparable to the electromagnetic radiation emitted from an entire galaxy over the age of the universe!
 CfA: October 19, 2009

Opportunity and Challenge

GWs carry a lot of energy, but interact weakly: can pass through everything, including detectors!

Gravitational-Wave Observatory)

- 4 km long arms
- Typical strains $h = \Delta L / L \sim 10^{-21}$ (NS-NS in Virgo cluster)
- Needs to measure $\Delta L = hL \sim 10^{-18} \text{ m}$
- 2 LIGO detectors in US + Virgo, GEO in Europe
- Virgo has 3 km baseline; data-sharing agreement with LIGO CfA: October 19, 2009

LIGO Noise Spectrum

CfA: October 19, 2009

Advanced LIGO

- ~ x10 in range -> ~ x1000 in event rate
- 10 Hz low frequency cutoff

CfA: October 19, 2009

E

Types of GW sources

- Continuous sources [sources with a slowly evolving frequency]: e.g., non-axisymmetric neutron stars, slowly evolving binaries
 - Coalescence sources: compact object binaries

CfA: October 19, 2009

 Burst events [unmodeled waveforms]: e.g., asymmetric SN collapse, cosmic string cusps

Stochastic GW background [early universe]

??? [expect the unexpected]

Why do we want to see GWs?

- Probing stellar dynamics and evolution via stellar-mass compactobject binary measurements (NS-NS, NS-BH, BH-BH)
- Studying galactic structure formation by measuring mass and spin distributions of massive black holes (MBHs); measuring highredshift mergers of MBH progenitors; understanding galactic mergers (e.g., kicks) and history of structure formation
- Direct probes of early-universe cosmology by measuring GWs emitted soon after the Big Bang
- Mapping cosmology with GW events as standard candles (especially with electromagnetic counterparts to binary mergers)
- Studying structure of neutron stars and white dwarfs
- Studying compact objects falling into massive black holes in galactic nuclei
- Probing gravity in the strong field, testing general relativity CfA: October 19, 2009

Rates predictions

- Ground-based interferometric detectors (LIGO, Virgo, GEO 600, AIGO, LCGT) are sensitive @ tens/hundreds
 Hz: ideal for detecting NS-NS, NS-BH, BH-BH binaries
- Coalescence rate predictions from:
 - » extrapolation from observed binary pulsars
 - » simulations of isolated binary evolution
 - » dynamical-formation models
 - » intermediate-mass-black holes ?
- Instrument sensitivity and conversion to detection rates
- All astrophysical rates estimates depend on limited observations and/or models with many ill-understood parameters, and are still significantly uncertain at present

Prognostication

						Record	s and Average	es for October			° <u>E</u> ° C
						Month	Average low	Average high	Average precip	Record low	Record high
						Oct 1	11°	19°	0.3 cm	2° (1992)	32° (1927)
						Oct 2	11°	19°	0.3 cm	1° (1997)	31° (1954)
				Oct 3	11°	19°	0.3 cm	3° (1945)	29° (1922)		
10-Day Business Travel Forecast for Cambridge, MA Weather for you Flights & Busine			er for your lif	Oct 4	10°	19°	0.3 cm	2° (1945)	30° (2007)		
			Flights	& Business Trav	Oct 5	10°	18°	0.3 cm	1° (1965)	31° (1922)	
[English Metric] 📇 Printable Forecast					Oct 6	9°	18°	0.3 cm	1° (1984)	30° (1990)	
Forecast Conditions High °C Pr Low °C Ch		Precip.	High Temperatures		Oct 7	9°	18°	0.3 cm	2° (1984)	32° (1963)	
		Chance			Oct 8	9°	18°	0.3 cm	2° (1964)	27° (1931)	
	~					Oct 9	9°	18°	0.3 cm	2° (1937)	28° (1942)
						Oct 10	9°	17°	0.3 cm	0° (1979)	31° (1939)
Mon Oct 10	Partly Cloudy	30	10%		8°C	Oct 11	9°	17°	0.3 cm	0° (1979)	28° (1955)
Oct 19	ranay cloudy	5				Oct 12	8°	17°	0.3 cm	2° (1956)	32° (1954)
						Oct 13	8°	17°	0.3 cm	0° (1934)	31° (1930)
						Oct 14	8°	17°	0.3 cm	1° (1958)	27° (1923)
						Oct 15	8°	17°	0.3 cm	1° (1979)	27° (1947)
						Oct 16	8°	16°	0.3 cm	1° (1978)	31° (1956)
						Oct 17	8°	16°	0.3 cm	0° (1937)	32° (1947)
						Oct 18	7°	16°	0.3 cm	-1° (1939)	28° (1947)
						Oct 19	7°	16°	0.3 cm	-2° (1922)	29° (1945)
						Oct 20	7°	16°	0.3 cm	0° (1974)	26° (1969)

Extrapolation from BNS observations

- Best NS-NS merger-rate estimates come from observed Galactic binary pulsars
- Small-number statistics (~10 total, ~5 merging in 15 Gyr)
- Selection effects (pulsar luminosity distribution)
- [Kim et al., 2003 ApJ 584 985, 2006 astro-ph/0608280; Kalogera et al., 2004, ApJ 601 L179]

CfA: October 19, 2009

Population synthesis models

- No observed NS-BH or BH-BH binaries
- Predictions based on population-synthesis models for isolated binary evolution with StarTrack [Belczynski et al., 2005, astro-ph/0511811] or similar codes
- Thirty poorly constrained parameters
- [O'Shaughnessy et al., 2005 ApJ 633 1076, 2008 ApJ 672 479] vary seven most important parameters:
 - 1. power-law index in binary mass ratio
 - 2, 3, 4. supernovae kicks described by two independent Maxwellians and their relative contribution
 - 5. strength of massive stellar wind
 - 6. common-envelope efficiency
 - 7. fractional mass retention during nonconservative mass transfer

Constraining models

- Add constraints from observations; binary pulsars: NS-NS, NS-WD, supernovae, etc.
- Average over models that satisfy constraints

Effect of adding constraints, 1

Single constraint satisfaction - no accounting for sampling uncertainties or model fitting errors

CfA: October 19, 2009

Single constraint satisfaction - no accounting for sampling uncertainties or model fitting errors

CfA: October 19, 2009

Effect of adding constraints, 2

Constraints from observed binary pulsars

BH-NS and NS-NS rate/MWEG predictions

[O'Shaughnessy et al., 2008, ApJ 672 479]

CfA: October 19, 2009

E

R

Rates per Galaxy

- In simplest models, coalescence rates are proportional to stellar-birth rates in nearby spiral galaxies, so we quote rates in units of L₁₀ (blue-light luminosity of 10¹⁰ Suns)
- However, this does not properly account for delay of coalescence relative to star formation (esp. elliptical galaxies)

LIGO sensitivity

CfA: October 19, 2009

Detection Rates

IFO	Source	$\dot{N}_{ m low}$	$\dot{N}_{ m re}$	$\dot{N}_{ m pl}$
		yr^{-1}	yr^{-1}	yr^{-1}
	NS-NS	2×10^{-4}	0.02	0.2
Initial	NS-BH	9×10^{-5}	0.006	0.2
	BH-BH	2×10^{-4}	0.009	0.7
	NS-NS	0.4	40	400
Advanced	NS-BH	0.2	10	300
	BH-BH	0.5	20	1000

Dynamical Formation

- BH-BH mergers in dense black-hole subclusters of globular clusters
 - » [O'Leary, O'Shaughnessy, Rasio, 2007 PRD 76 061504]
 - » Predicted rates 10⁻⁴ to 1 per Mpc³ per Myr
 - » Plausible optimistic values could yield 0.5 events/year for Initial LIGO
- BH-BH scattering in galactic nuclei with a density cusp caused by a massive black hole (MBH)
 - » [O'Leary, Kocsis, Loeb, 2009 arXiv:0807.2638]
 - » Based on a number of optimistic assumptions
 - » Predicted detection rates of 1 to 1000 per year for Advanced LIGO
- BH-BH mergers in nuclei of small galaxies without an MBH
 - » [Miller and Lauburg, 2009 ApJ 692 917]
 - » Predicted rates of a few X 0.1 per Myr per galaxy
 - » Tens of detections per year with Advanced LIGO

Inspirals into IMBHs

- Intermediate-mass-ratio inspirals of compact objects (1.4 solar-mass NSs or 10 solar-mass BHs) into intermediate-mass black holes in globular clusters
- Dominant mechanism: IMBH swaps into binaries, 3-body interactions tighten IMBH-CO binary, merger via GW radiation reaction [IM et al., 2008 ApJ 681 1431]

- Rate per globular cluster: few x 10⁻⁹ yr⁻¹
- Predicted Advanced LIGO event rates between 1/few years and ~30/year

CfA: October 19, 2009

Inspirals of two IMBHs

- Two very massive stars could form in globular clusters with sufficient binary fraction, then grow through runaway collision to form two IMBHs in same GC
- Rates of order 1/year are possible for Advanced LIGO [Fregeau et al., 2006 ApJ 646 L135]
- IMBH binaries could also form when two GCs merge [Amaro-Seoane and Freitag, 2006, ApJ 653 L53]

Informing GW searches with Astro, 1

Selecting IFO configuration based on astro predictions

Public LIGO document T-070247

CfA: October 19, 2009

Informing GW searches with Astro, 2

- Rates predictions can help to determine which searches we should focus resources on
- Choice of waveform templates for detection

Waveform families

- Typical frequency scales as 1/Mass
- For massive systems $(M \gtrsim 50 M_{\odot} \text{ for LIGO}),$ merger and ringdown contribute significantly to signal-to-noise ratio (SNR)
- Inspiral alone can be below detector's frequency band, pN waveforms are inadequate
- Spins add complications

Detection: Matched Filtering

E

Informing GW searches with Astro, 2

- Rates predictions can help to determine which searches we should focus resources on
- Choice of waveform templates for detection:
 - » Example 1: Low chirp masses may make merger/ringdown waveforms unnecessary for most stellar-mass BH-BH mergers; however, searches with the full inspiral-merger-ringdown waveforms informed by numerical relativity will be necessary for GWs from IMBH sources
 - » Example 2: Spin is important for accurate parameter estimation of BH-NS and BH-BH binaries
 - » Example 3: Could cut down on template number (and reduce FAR) for spinning BH-NS template banks since very massive BHs will be hard to spin up [Pan et al., 2004, PRD 69 104017]

Astrophysics with GW searches

 Constraints on astrophysical parameters from existing electromagnetic observations [O'Shaughnessy et al., 2008 ApJ 672 479]:

Е

Astrophysics with GW searches

- Constraints on astrophysical parameters from existing electromagnetic observations [O'Shaughnessy et al., 2008 ApJ 672 479]:
- Observed GW event rates can be compared with models to determine important astrophysical parameters;

Rates to parameter constraints - theory

- Let f(R) be the measured rates distribution
- The constrained distribution of astrophysical parameters is given by Bayes Rule: $p(\vec{\Theta}|f(R)) = \frac{p(f(R)|\vec{\Theta})p(\vec{\Theta})}{p(f(R))}$
- For a given choice of model parameters, population synthesis codes coupled to information about galaxy distributions and detector sensitivity provide a distribution of the detectable event rate, $p(\hat{R}|\vec{\Theta})$
- If an actual rate R is measured, then the likelihood that the model with a given choice of parameters fits the measurement is $\mathcal{L}(R|\vec{\Theta}) = e^{-\frac{|R-\hat{R}|^2}{2\sigma_R^2}}$

• Then
$$p(f(R)|\vec{\Theta}) = \int d\hat{R}\mathcal{L}(R|\vec{\Theta})p(\hat{R}|\vec{\Theta})$$

CfA: October 19, 2009

Astrophysics with GW searches

- Constraints on astrophysical parameters from existing electromagnetic observations [O'Shaughnessy et al., 2008 ApJ 672 479]:
- Observed GW event rates can be compared with models to determine important astrophysical parameters;
- Could match measured mass distributions, etc. to models (requires accurate parameter determination)

Accurate Parameter Estimation

CfA: October 19, 2009

E

R

CIERA

Markov Chain Monte Carlo

CfA: October 19, 2009

Animation by Marc van der Sluys

Astrophysics with GW searches

- Constraints on astrophysical parameters from existing electromagnetic observations [O'Shaughnessy et al., 2008 ApJ 672 479]:
- Observed GW event rates can be compared with models to determine important astrophysical parameters;
- Could match measured mass distributions, etc. to models (requires accurate parameter determination)
- As detector sensitivity improves, even upper limits can be useful in constraining parameter space for birth kicks, common-envelope efficiency, winds, etc.

Constraints from upper limits - example

Constraints from upper limits - example

Common Envelope Efficiency

		Double Compact Object Formation Channels
Formation	Relative	
Channel	${\rm Efficiency}^{\alpha}$	Evolutionary History ^{β}
NSNS:01	20.3~%	NC:a \rightarrow b, SN:a, HCE:b \rightarrow a, HCE:b \rightarrow a, SN:b
NSNS:02	10.8~%	NC:a→b, SCE:b→a, NC:a→b, SN:a, HCE:b→a, SN:b
NSNS:03	5.5 %	SCE:a \rightarrow b, SN:a, HCE:b \rightarrow a, HCE:b \rightarrow a, SN:b
NSNS:04	4.0 %	NC:a→b, SCE:b→a, SCE:b→a, SN:b, HCE:a→b, SN:a
NSNS:05	3.2 %	DCE:a \rightarrow b, SCE:a \rightarrow b, SN:a, HCE:b \rightarrow a, SN:b
NSNS:06	$2.5 \ \%$	SCE:a→b, SCE:b→a, NC:a→b, SN:a, HCE:b→a, SN:b
NSNS:07	2.2 %	NC:a→b, NC:a→b, SN:a, HCE:b→a, HCE:b→a, SN:b
NSNS:08	2.0 %	NC:a \rightarrow b, DCE:b \rightarrow a, SN:a, HCE:b \rightarrow a, SN:b
NSNS:09	2.0 %	DCE: $a \rightarrow b$, DCE: $a \rightarrow b$, SN: a , SN: b
NSNS:10	1.6~%	NC:a \rightarrow b, SCE:b \rightarrow a, SN:b, HCE:a \rightarrow b, SN:a
NSNS:11	$1.5 \ \%$	NC:a \rightarrow b, SCE:b \rightarrow a, DCE:b \rightarrow a, SN:a, SN:b
NSNS:12	$1.5 \ \%$	NC:a→b, SCE:b→a, DCE:a→b, SN:a, SN:b
NSNS:13	1.0 %	DCE:a \rightarrow b, SN:a, HCE:b \rightarrow a, SN:b
NSNS:14	3.0 %	all other
BHNS:01	4.5 %	NC:a \rightarrow b, SN:a, HCE:b \rightarrow a, SN:b
BHNS:02	1.6~%	NC:a \rightarrow b, SCE:b \rightarrow a, SN:a, SN:b
BHNS:03	1.3~%	SCE:a \rightarrow b, SN:a, HCE:b \rightarrow a, NC:b \rightarrow a, SN:b
BHNS:04	2.0 %	all other
BHBH:01	17.7 %	NC:a \rightarrow b, SN:a, HCE:b \rightarrow a, SN:b
BHBH:02	10.5~%	NC:a \rightarrow b, SCE:b \rightarrow a, SN:a, SN:b
BHBH:03	1.4~%	all other
		1 2007 Diseries Demonts 442 75

[Kalogera et al., 2007, Physics Reports 442, 75] CfA: October 19, 2009

Also possible to constrain commonenvelope model with LISA observations: [Belzcynski, Benacquista, Bulik, 2008, arXiv:0811.1602]

LISA: Laser Interferometer Space Antenna

3 spacecraft following Earth around Sun,CfA: October 19, 20095 million km apart

LISA Binary Sources

- LIGO sensitive @ a few hundred Hz
 » NS-NS, NS-BH, BH-BH binaries
- LISA sensitive @ a few mHz

Embarrassment of riches

CfA: October 19, 2009

E

R

from Amaro-Seoane et al., 2007 39

EMRI: Extreme Mass Ratio Inspiral

CfA: October 19, 2009

С

E

R

Animation from Jon Gair

LISA Binary Sources

- LIGO sensitive @ a few hundred Hz
 » NS-NS, NS-BH, BH-BH binaries
- LISA sensitive @ a few mHz
 - » massive black-hole binaries
 - merger tree models to describe history of Galactic mergers
 - could be detected anywhere in Universe, SNR up to thousands
 - a few to tens of detections [e.g., Sesana et al., 2005]
 - » galactic white dwarf (and compact object) binaries
 - 30 million in Galaxy, create noise foreground [Farmer & Phinney, 2003]
 - 20,000 resolvable
 - » extreme-mass-ratio inspirals of WDs/NSs/BHs into SMBHs
 - complicated modeling of dynamics in Galactic centers: loss cone problem, resonant scattering, etc.
 - can see tens to hundreds to $z\sim1$ [e.g., Gair et al., 2004]

Third-generation detectors

The Einstein Telescope:

Ε

- » Underground, sensitive to 1 Hz
- » Exciting science example: mergers of light seeds of massive black holes at high redshifts [Sesana, Gair, IM, Vecchio, 2009]

ALIA/DECIGO/BBO

- » Space-based LISAs on steroids
- » Exciting science example: using 300,000 merging binaries as standard candles for precision cosmology: Hubble constant to 0.1%, w to 0.01 [Cutler & Holz, 2009]

Pulsar timing

» Sensitive to SMBHBs @ 10⁻⁸ Hz

```
CfA: October 19, 2009
```


from Gair, IM, Sesana, Vecchio, 2009

Conclusion

- Current understanding of coalescence rates and properties of compact binaries is imperfect
- Advanced LIGO is likely to see NS-NS, NS-BH, BH-BH coalescences; tens or more coalescences may be seen according to some models, including dynamical formation
- Improved understanding of astrophysics can help GW search by informing detector configuration, template family
- GW detections and upper limits for compact-object coalescences will allow us to constrain the astrophysical parameters
- Future GW detectors (LISA and beyond) will allow precise probes of a wide range of astrophysical environments