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Gravitational Waves

Ripples in spacetime:

Caused by time-varying mass quadrupole moment

Indirectly detected by Hulse & Taylor [binary pulsar]

Huge amounts of energy released: 5% of mass-energy of a 
supermassive black hole binary is more than the 
electromagnetic radiation emitted from an entire galaxy over 
the age of the universe!



Gravitational Waves

Ripples in spacetime:

Caused by time-varying mass quadrupole moment

Huge amounts of energy released: 5% of mass-
energy of a supermassive black hole binary is more 
than the electromagnetic radiation emitted from an 
entire galaxy over the age of the universe!

Inspiral sound borrowed
 from Scott Hughes



Types of GW sources

Continuous sources [sources with a slowly 
evolving frequency]: e.g., non-axisymmetric 
neutron stars, slowly evolving binaries

Coalescence sources: compact object binaries 

Burst events [unmodeled waveforms]: e.g., 
asymmetric SN collapse, cosmic string cusps

Stochastic GW background [early universe]

??? [expect the unexpected]



Why do we want to see GWs?
Probing stellar dynamics and evolution via stellar-mass compact-object binary 
measurements (NS-NS, NS-BH, BH-BH)

Studying galactic structure formation by measuring mass and spin 
distributions of massive black holes (MBHs); measuring high-redshift mergers 
of MBH progenitors; understanding galactic mergers (e.g., kicks)

Direct probes of early-universe cosmology by measuring GWs emitted soon 
after the Big Bang 

Mapping cosmology with GW events as standard candles (especially with 
electromagnetic counterparts to binary mergers)

Studying structure of neutron stars and white dwarfs

Studying compact objects falling into massive black holes in galactic nuclei



Opportunity and Challenge
GWs carry a lot of energy, but interact weakly: 
can pass through everything, including detectors!

Michelson-type interferometers



LIGO (Laser Interferometer 
GW Observatory

- 4 km long arms
- Typical strains h = ΔL /L ~ 10-22 (NS-NS in Virgo)
- Needs to measure ΔL = hL ~ 10-17 m
- 2 LIGO detectors in US + Virgo, GEO



LIGO Noise Curve



Advanced LIGO

- x10 in range -> x1000 in event rate
- 10 Hz low frequency cutoff



LISA (Laser Interferometer 
Space Antenna)

3 spacecraft following Earth around sun, 5 million km apart



LIGO and LISA Binary Sources

LIGO sensitive @ a few hundred Hz

NS-NS, NS-BH, BH-BH binaries  

LISA sensitive @ a few mHz

supermassive black-hole binaries (106       )M!

extreme-mass-ratio inspirals 
 of WDs/NSs/BHs into SMBHs

galactic white dwarf binaries



Intermediate-mass-ratio inspirals 
(IMRIs)

IMRIs have mass ratios between 10 and 104

LIGO IMRIs: Inspirals of compact objects (1.4 solar-mass 
Neutrons Stars to 10 solar-mass Black Holes) into 
intermediate mass black holes (IMBHs, 50-350 solar masses)

Indirect evidence for IMBH existence in globular clusters (50 
– 104 solar masses)

Observational evidence (e.g. Macarone et al.)

Simulations (e.g. McMillan et al., O’Leary et al.)

Simulations vs. Observations (e.g. Trenti)

IMRIs could be the first proof of IMBH existence!



Event Rates: Mechanisms
Three-body interactions: IMBH swaps into binaries, forms 
CO-IMBH binaries which are tightened via three-body 
interactions with other stars, then merge via GW radiation 
reaction

Direct capture via energy loss to GWs

Kozai resonances in hierarchical triple systems: inner 
binary eccentricity is driven up by outer companion

Tidal capture of MS star that evolves into CO while in orbit

Tidal interactions (orbital-vibrational coupling) for NS 
inspirals



Event Rates: Mechanisms
Three-body interactions: IMBH swaps into binaries, forms 
CO-IMBH binaries which are tightened via three-body 
interactions with other stars, then merge via GW radiation 
reaction [IM, Brown, Gair, Miller; 2008; ApJ 681 1431-1447. arXiv:0705.0285]

Direct capture via energy loss to GWs

Kozai resonances in hierarchical triple systems: inner 
binary eccentricity is driven up by outer companion

Tidal capture of MS star that evolves into CO while in orbit

Tidal interactions (orbital-vibrational coupling) for NS 
inspirals



Event rates per G.C.
Binary tightening via 3-body interaction

3-body interaction rate is dN/dt=nσv; 

n~105.5 pc-3; v~10 km/s; σ~πa(2GM/v2)

Tharden ~ O(M/m) (dN/dt)-1 ~ 1.5*108 (AU/a) yr   [Quinlan]

Tmerge ~ 5*1017 M•
3/(M2m) (a/AU)4 (1-e2)7/2 yr 

 ~ 5*108 (M•/m) (100M•/M)2 (a/AU)4 yr [Peters & Mathews]

To maximize rate, minimize T=Tharden+Tmerge

Rate per globular is ~ 3*10-9 yr-1 for NS, 

    5*10-9 yr-1 for BH



Advanced LIGO
IMRI sensitivity

Use EMRI-like waveforms, 
including non-quadrupolar 
harmonics, to determine 
range

Range is spin-dependent

Range could be increased 
by x1.5 by tuning 
Advanced LIGO

IM, arXiv:0707.0711



Advanced LIGO 
IMRI rates

Assume 10% of all globular clusters hold 
suitable IMBH (typical mass 100 Msun, spin=0.2)

If inspiraling object is 1.4 Msun NS, Advanced 
LIGO could detect one IMRI per 3 years

If inspiraling object is 10 Msun BH, Advanced 
LIGO could detect 10 IMRIs per year

If Advanced LIGO is IMRI-optimized, rates 
could go up to 1/year and 30/year



Eccentricities in AdvLIGO band
Hardening via 3-body interactions

Eccentricity ~ few*10-5 when fGW=10 Hz 

Direct capture

90% of IMRIs circularize to e<0.1 by 10 
Hz, 67% circularize to e<0.01 by fGW=10 Hz 

At e=0.01, overlap 
between eccentric and 
circular templates is 
>0.99, so circular 
templates can be used for 
detection



Intermediate-Mass-Ratio Inspiral Waveforms
EMRI waveforms: expansions in η=mM/(M+m)2∼m/M

Post-Newtonian waveforms: expansions in v/c

IMRIs fall in the middle... which one is closer? which one is easier to “patch 
up” to create an IMRI template?

pN errors are concentrated near ISCO, where v/c is highest IMRIs fall between 
EMRIs and comparable-mass binaries for waveform generation & data analysis

EMRI errors are spread throughout waveform:

df/dt ∝ m/M; Δ(df/dt) ∝ (m/M)2

Accumulated phase error is Δφ ∝ Δ(df/dt) T2

if source is bandwidth-limited, T ∝ (M/m), so Δφ=O(1)

if source is limited by observation time, T is fixed (e.g., 3 yrs for LISA), and Δφ ∝ (m/M)2

Threshold η depends on ISCO frequency relative to detector noise, set by M



Overlaps:

At low η, EMRIs are better; at high η, PN

Neither waveform is good at intermediate η!

Can we get better hybrid waveforms by combining EMRI and pN?

〈a|b〉 = 4R
∫ ∞

0

a(f)b∗(f)
Sn(|f |) df

LISA LIGO

IM & Gair,arXiv:0811.0138 



Ringdowns

Could complement IMRIs if higher CO and IMBH 
masses are prevalent



What is the “no-hair 
theorem”?



What is the “no-hair 
theorem”?

idea taken from Daniel Shaddock



What is the “no-hair 
theorem”?

Stationary, vacuum, asymptotically flat spacetimes 
in which the singularity is fully enclosed by a 

horizon with no closed timelike curves outside the 
horizon are described by the Kerr metric



The no-hair theorem in 
English

“Black holes have no hair” means that all 
higher-order mass and current multipole 
moments are uniquely determined by the 
black hole mass and spin

Conversely, an object with hair is one for 
which

The “no-hair theorem” is a mathematical 
statement, so the title is a bit of a 
misnomer...



Do Black Holes Have Hair? 
Probing spacetime with E/IMRIs

Are massive “black holes” really hairless?  

Need to measure 3 multipole moments to test 
“Kerrness”, 4 to test if an object is a boson star

LISA EMRIs into SMBHs will be the best probes of the 
strong-field regime (#cycles ~ M/m), but Advanced LIGO 
IMRIs into IMBHs may provide the first interesting test

Information about the spacetime structure and the orbit 
should be contained in GWs; how do we access it?

Or could they be boson stars, naked 
singularities, ...? 



Chaotic motion [Poincare maps]
integral.
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FIG. 4: Effective potential for geodesic motion around a bumpy black hole with χ = 0.9, q = 0.95,

E = 0.95, and Lz = 3M . The thick dotted curves indicate zeros of the effective potential. The

trajectory of a typical geodesic in the outer region is shown by a thin curve. The regular pattern of

self-intersections of the geodesic projection onto the ρ−z plane indicates (nearly) regular dynamics.

If |q| is increased from the value shown in Figure 4, the two regions of bound motion
eventually merge. When this first occurs, the “neck” joining the regions is extremely narrow.
Geodesics exist which can pass through the neck, but this requires extreme fine tuning. As
|q| is further increased, the neck gradually widens and eventually disappears. At that stage,
the single allowed region for bound orbits has a similar shape to the outer region of Figure 4.

These general properties of the effective potential seem to be common to all spacetimes
with q > 0 and χ "= 0. More relevant for the EMRI problem is to fix q and χ and to vary
E and Lz . For E = 1 and sufficiently large Lz, there are two regions of allowed motion
bounded away from the origin, in addition to the plunging zone connected to the singularity
at ρ = 0, |z| ≤ 1. The outermost of the allowed regions stretches to infinity and contains
parabolic orbits. The inner region of bounded motion is the analogue of the inner bound
region described above and lies very close to the central object. If the angular momentum
is decreased, while keeping E = 1, the two non-plunging regions get closer together and
eventually merge to leave one allowed region that stretches to infinity. For fixed E < 1
the behavior is qualitatively the same, except that for Lz $ M there is no outer region
(there is a maximum allowed angular momentum for bound orbits of a given energy, as in
the Kerr spacetime). As Lz is decreased, the outer region for bound motion appears and
then eventually merges with the inner region. Decreasing Lz further eventually causes the
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FIG. 7: Poincare map for a geodesic in the inner region of Fig. 4.

frequencies at a high level of precision (1 part in 107 for the first ∼ 10 harmonics). This
multi-periodicity of the geodesics implies that the gravitational waveforms will also be multi-
periodic. Indeed, we find that an approximate gravitational waveform, constructed using
a semi-relativistic approximation for the gravitational-wave emission (as used to construct
Kerr EMRI waveforms in [20]), is also tri-periodic (the third frequency arises from the φ
motion since the observer is at a fixed sky location). The absolute value of the Fourier
transform of the h+(t) component of this gravitational waveform is also plotted in Fig. 8
and is clearly multi-periodic. This periodicity has important consequences for data analysis
and parameter extraction.

3. Comparison to Other Results

Our results are consistent with previous work by other authors who have found chaotic
geodesic motion in various spacetimes. Generally, chaotic motion only occurs in the strong-
field region close to the central object, and for a limited range of geodesic parameters. As
an example, Guéron and Letelier [12] found chaos in a prolate Erez-Rosen spacetime, which
represented a deformation of a Schwarzschild black hole. They demonstrated that, for a
particular value of the energy and angular momentum, when the deformation parameter had
a value k2 = −5, there was a single allowed region of bounded motion, but for k2 = −5.02
the region split into two separate regions. After the split, orbits in the inner region appeared
chaotic while those in the outer region appeared regular. For the merged region, orbits that
passed into the inner part also appeared ergodic while those that were purely in the outer

16

Gair, Li, Mandel. 2008. PRD 77 024035.  arXiv:0708.0628



Summary
The first gravitational-wave detections may happen in a few 
years
Advanced LIGO could detect a few IMRIs per year
Eccentricities will be low, circular waveforms can be used 
for detection 
Further work is needed to develop a waveform family for 
detecting IMRI signals
Gravitational waves from EMRIs should make it possible to 
test whether the central body [SMBH] is a Kerr black hole
This is a very exciting time for gravitational-wave 
astronomy: stay tuned!





New subtitle: do massive 
black holes have hair?

Are massive “black holes” really black holes?  

Could they be boson stars, or naked singularities, 
or...?

Need to measure 3 multipole moments to test 
“Kerrness”, 4 to test if an object is a boson star

Search for exotic massive compact objects, test of 
cosmic censorship conjecture, null hypothesis test 
of the no-hair theorem...



Summary
Advanced LIGO could detect a few IMRIs per year
Eccentricities will be low, circular waveforms can be used 
for detection (But should we use EMRI waveforms?  Hybrid 
waveforms? ...?) 
Gravitational waves from EMRIs should make it possible to 
test whether the central body [SMBH] is a Kerr black hole
Chaos in a non-Kerr spacetime would be an obvious smoking 
gun, but chaotic regions are probably not accessible
Location of ISCO, periapsis precession, and orbital-plane 
precession are possible observables indicating bumpiness

Frequency evolution over inspiral would be another 
observable, but more work is required



Event rates – upper limit
Model-independent upper limit

One core-collapsed globular cluster per Mpc3

One suitable IMBH per globular cluster

IMBH grows from 50 to 350 solar masses by capture of 
COs in Hubble time

Advanced LIGO could see IMRIs up to ~1000 Mpc 
(depending on masses, spin)

Advanced LIGO may see tens of IMRIs per year (only 1 
in 1000 years with Initial LIGO)

Issues: kicks above 50 km/s eject IMBH; lower rates late 
in cluster history [e.g. simulations by O’Leary et al. 2006]



Spin and detection range

t=M/m

Evolution from t=M/m=50 to t=100 (e.g., from M=70 to M=140 
solar masses via capture of m=1.4 solar-mass NSs)

If initial χ=0.1, then mean spin at t=100 is 0.162, σ=0.066

If initial χ=0.9, then mean spin at t=100 is 0.233, σ=0.087

Evolution of spin distribution via 
minor mergers

Range increase 
due to spin

Solid line - inspiral into 100 Msun IMBH

Dashed line - inspiral into 200 Msun IMBH

Effect is very pronounced for LISA:

can cause bias in spin estimate



Observing deviations 
from Kerr with EMRIs

LISA can detect tens to thousands of EMRIs

Ryan’s theorem [1995]: GWs from nearly circular, 
nearly equatorial orbits in stationary, axisymmetric 
spacetimes encode all of the spacetime multipole 
moments... in principle

Can we extend this theorem?  Are there obvious 
observable imprints of an anomalous, non-Kerr 
quadrupole moment (a “bumpy” spacetime)?  

Are energy E, angular momentum Lz and Carter 
constant Q conserved in a bumpy spacetime?



Geodesics in bumpy 
spacetimes

Use Manko-Novikov bumpy spacetime 

C code - geodesic equations:

Check conservation of E, Lz, 4-velocity norm

Equations might not separate as in Kerr

Is there a full set of integrals of motion?



Poincare maps

Check if spacetime has a full set of integrals of 
motion

Plot dρ/dt vs. ρ for z=z0 crossings

Phase space plots should be closed curves for all 
z0 iff there is a third isolating integral



Poincare maps for motion in 
Newtonian potential with 
hexadecapole moment

M2=10 M0;  M4=400 M0 Li



Poincare map in a bumpy 
spacetime

that traversed the neck more than once. Further adjustment of the orbital parameters causes
the neck to widen and eventually disappear. At that stage, most of the orbits appear to be
regular, but orbits that pass very close to the inner edge of the merged region (i.e., close to
the CTC zone) have not been fully investigated.

An alternative explanation of these results [19] is that the geodesic equations are nu-
merically unstable in the inner region, and therefore small numerical round-off errors in the
integration routines are driving the orbits away from their true values. Once again, this
distinction is not relevant observationally. An astrophysical system harboring an EMRI will
not be isolated. The gravitational perturbations from distant stars etc. will serve the same
role in perturbing the orbits as numerical errors might on a computer. The end result —
that the orbit is apparently ergodic — is the same.
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FIG. 6: Poincare map for a geodesic in the outer region of Fig. 4.

2. Frequency Component Analysis

The above conclusions are supported by a frequency-domain analysis of the ρ and z
motion in the two regions. The absolute values of Fourier transforms of ρ(t) and z(t) are
plotted in Figures 8 and 9. Fig. 9 shows an absence of clearly identifiable frequency peaks
for geodesics in the inner region, a result consistent with full-blown chaos. By contrast,
Fig. 8 shows discrete frequency peaks in the outer region. Generally such frequency peaks,
corresponding to harmonics of a few fundamental frequencies, occur in problems with a full
set of isolating integrals. We find that the frequency components measured for the ρ and z
motion in the outer region can be represented as low order harmonics of two fundamental
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Allowed regions for 
bound orbits
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Allowed regions for 
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Allowed regions for 
bound orbits
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E=0.95, Lz=-3, a/M=0.9, q=0.95



Poincare map in a bumpy 
spacetime, second look

that traversed the neck more than once. Further adjustment of the orbital parameters causes
the neck to widen and eventually disappear. At that stage, most of the orbits appear to be
regular, but orbits that pass very close to the inner edge of the merged region (i.e., close to
the CTC zone) have not been fully investigated.

An alternative explanation of these results [19] is that the geodesic equations are nu-
merically unstable in the inner region, and therefore small numerical round-off errors in the
integration routines are driving the orbits away from their true values. Once again, this
distinction is not relevant observationally. An astrophysical system harboring an EMRI will
not be isolated. The gravitational perturbations from distant stars etc. will serve the same
role in perturbing the orbits as numerical errors might on a computer. The end result —
that the orbit is apparently ergodic — is the same.
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FIG. 6: Poincare map for a geodesic in the outer region of Fig. 4.

2. Frequency Component Analysis

The above conclusions are supported by a frequency-domain analysis of the ρ and z
motion in the two regions. The absolute values of Fourier transforms of ρ(t) and z(t) are
plotted in Figures 8 and 9. Fig. 9 shows an absence of clearly identifiable frequency peaks
for geodesics in the inner region, a result consistent with full-blown chaos. By contrast,
Fig. 8 shows discrete frequency peaks in the outer region. Generally such frequency peaks,
corresponding to harmonics of a few fundamental frequencies, occur in problems with a full
set of isolating integrals. We find that the frequency components measured for the ρ and z
motion in the outer region can be represented as low order harmonics of two fundamental
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FIG. 7: Poincare map for a geodesic in the inner region of Fig. 4.

frequencies at a high level of precision (1 part in 107 for the first ∼ 10 harmonics). This
multi-periodicity of the geodesics implies that the gravitational waveforms will also be multi-
periodic. Indeed, we find that an approximate gravitational waveform, constructed using
a semi-relativistic approximation for the gravitational-wave emission (as used to construct
Kerr EMRI waveforms in [20]), is also tri-periodic (the third frequency arises from the φ
motion since the observer is at a fixed sky location). The absolute value of the Fourier
transform of the h+(t) component of this gravitational waveform is also plotted in Fig. 8
and is clearly multi-periodic. This periodicity has important consequences for data analysis
and parameter extraction.

3. Comparison to Other Results

Our results are consistent with previous work by other authors who have found chaotic
geodesic motion in various spacetimes. Generally, chaotic motion only occurs in the strong-
field region close to the central object, and for a limited range of geodesic parameters. As
an example, Guéron and Letelier [12] found chaos in a prolate Erez-Rosen spacetime, which
represented a deformation of a Schwarzschild black hole. They demonstrated that, for a
particular value of the energy and angular momentum, when the deformation parameter had
a value k2 = −5, there was a single allowed region of bounded motion, but for k2 = −5.02
the region split into two separate regions. After the split, orbits in the inner region appeared
chaotic while those in the outer region appeared regular. For the merged region, orbits that
passed into the inner part also appeared ergodic while those that were purely in the outer
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Regular outer region
integral.
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FIG. 4: Effective potential for geodesic motion around a bumpy black hole with χ = 0.9, q = 0.95,

E = 0.95, and Lz = 3M . The thick dotted curves indicate zeros of the effective potential. The

trajectory of a typical geodesic in the outer region is shown by a thin curve. The regular pattern of

self-intersections of the geodesic projection onto the ρ−z plane indicates (nearly) regular dynamics.

If |q| is increased from the value shown in Figure 4, the two regions of bound motion
eventually merge. When this first occurs, the “neck” joining the regions is extremely narrow.
Geodesics exist which can pass through the neck, but this requires extreme fine tuning. As
|q| is further increased, the neck gradually widens and eventually disappears. At that stage,
the single allowed region for bound orbits has a similar shape to the outer region of Figure 4.

These general properties of the effective potential seem to be common to all spacetimes
with q > 0 and χ "= 0. More relevant for the EMRI problem is to fix q and χ and to vary
E and Lz . For E = 1 and sufficiently large Lz, there are two regions of allowed motion
bounded away from the origin, in addition to the plunging zone connected to the singularity
at ρ = 0, |z| ≤ 1. The outermost of the allowed regions stretches to infinity and contains
parabolic orbits. The inner region of bounded motion is the analogue of the inner bound
region described above and lies very close to the central object. If the angular momentum
is decreased, while keeping E = 1, the two non-plunging regions get closer together and
eventually merge to leave one allowed region that stretches to infinity. For fixed E < 1
the behavior is qualitatively the same, except that for Lz $ M there is no outer region
(there is a maximum allowed angular momentum for bound orbits of a given energy, as in
the Kerr spacetime). As Lz is decreased, the outer region for bound motion appears and
then eventually merges with the inner region. Decreasing Lz further eventually causes the
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Regular motion in outer region, suggestive of fourth-
degree invariant

Both ρ and z motion consist of harmonics of two 
fundamental frequencies to 10-7



Chaotic inner region

If motion is chaotic for any initial conditions, it is 
chaotic for all initial conditions, but an approximate 
invariant may exist in some cases (invariant tori) [KAM 
Theorem]



Chaos in Gueron-Letelier 
spacetime



Is chaos accessible?

Inner and outer regions appear to merge under 
radiation reaction, but never split

Object starts out in outer, regular region; once the two 
regions are fully merged, motion is regular (but odd 
things may happen when the neck is narrow...)
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FIG. 10: The evolution of the separation ∆ρ between the inner and outer bounded regions in

the equatorial plane along an inspiral in a Manko-Novikov spacetime with χ = 0.9 and q = 0.95.

∆ρ = 0 means that the two regions have merged and there is a single bounded region.

an inspiraling object can never end up in the inner of two allowed regions of bound motion,
where ergodic motion is prevalent. Secondly, inspirals always start out in a phase where the
motion is regular. This is very important, since it will allow the systems to be detected in
this early inspiral stage by gravitational-wave detectors using matched filtering or a time-
frequency analysis. The inspiraling object will eventually end up in the merged region formed
after the two regions of bounded motion converge. Both ergodic and regular geodesics exist
in that region, so in principle the particle could find itself on an ergodic orbit. However,
most orbits in the merged region appear to be regular so it would require fine tuning to put
the object onto such a geodesic (e.g., the “neck traversing” geodesics discussed earlier). It
thus seems unlikely that this would occur in practice.

Although these results apply only to the Manko-Novikov family of spacetimes, the con-
clusions are consistent with other examples of chaotic geodesics in relativity. For instance,
in the prolate Erez-Rosen spacetime considered in [12], if an object had arrived in the region
where ergodic motion is observed during the course of an inspiral, its orbital energy and
angular momentum would have been larger earlier in the inspiral. However, if either the
energy or angular momentum is increased from the values that give ergodic motion, the
effective potential changes so that it has only one allowed region, which includes “escape
zones” connected to the central singularity. All geodesics in such a zone plunge into the
central object in a short time so an astrophysical inspiral could not persist through that
zone. We deduce that for that spacetime as well the ergodic region is inaccessible to objects
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Other observable 
signatures of bumpiness
If the orbits are indeed multi-periodic, then the 
spacetime “bumpiness” should be observable via:

1. three fundamental frequencies of gravitational waves

2.harmonic structure of the waves (relative frequencies and 
phases of harmonics)

3.evolution of these with time over inspiral

Further study required to properly analyze inspiral 



Location of innermost stable 
circular orbit (ISCO)

The ISCO frequency (and hence plunge frequency) 
depends on the value of the spacetime quadrupole 
moment
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FIG. 11: Properties of the equatorial ISCO in spacetimes with χ = 0, as a function of q. We show

the ρ coordinate of the ISCO (left panel) and the dimensionless frequency of the orbit at the ISCO

(right panel). As described in the text, the ISCO radius has three branches, depending on whether

it is determined by one of the two branches of radial instability or the branch of vertical instability.

These branches are indicated separately in the diagram. For values of q where all three branches

are present, the dashed line denotes the “OSCO” and the dotted line denotes ρ̃ISCO as discussed

in the text. Allowed orbits lie above the curve in the left panel, and below the curve in the right

panel.

comparatively small deviations from Kerr.

V. PERIAPSIS AND ORBITAL-PLANE PRECESSIONS

In Section III we saw that astrophysically relevant orbits in the Manko-Novikov space-
time are multi-periodic to high precision. In such cases, there is no smoking-gun signature
that indicates the presence of “bumpiness” in the spacetime. Instead, the imprint of the
spacetime bumpiness will be observationally apparent in the location of the last stable orbit,
as discussed in the previous section, and in the following ways: (1) in the three fundamen-
tal frequencies of the gravitational waves generated while the inspiraling object is on an
instantaneous geodesic orbit; (2) in the harmonic structure of the gravitational-wave emis-
sion, i.e., the relative amplitudes and phases of the various harmonics of the fundamental
frequencies; and (3) in the evolution of these frequencies and amplitudes with time as the
object inspirals. A full analysis of the accuracies that could be achieved in observations
would involve computing gravitational waveforms in the bumpy spacetimes, performing a
Fisher-Matrix analysis to account for parameter correlations, and comparing to a similar
analysis for Kerr. That is beyond the scope of this paper. However, we can examine the
first of these observational consequences by comparing the fundamental frequencies between
the bumpy and Kerr spacetimes.

The complication in such an analysis is to identify orbits between different spacetimes.
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Periapsis precession
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FIG. 17: Difference between periapsis precessions in a bumpy spacetime with χ = 0 and the

Schwarzschild spacetime, ∆pρ(Ωφ, q) = pρ(Ωφ, q) − pρ(Ωφ, q = 0).

the precession (see Eq. (B15) in the Appendix) then gives

pρ =

(

3 (MΩ0)
2

3 − 4χ (MΩ0) +
3

2

(

9 + χ2 + q
)

(MΩ0)
4

3 + · · ·
)

+
(

2 (MΩ0)
2

3 − 4χ (MΩ0) + 2
(

9 + χ2 + q
)

(MΩ0)
4

3 + · · ·
) Ωφ − Ω0

Ω0

+

(

−
1

3
(MΩ0)

2

3 +
1

3

(

9 + χ2 + q
)

(MΩ0)
4

3 + · · ·
) (

Ωφ − Ω0

Ω0

)2

+ · · ·

= b0 + b1
Ωφ − Ω0

Ω0
+ b2

(

Ωφ − Ω0

Ω0

)2

+ · · · (24)

In this kind of expansion the multipole moments again contribute at all orders. However,
provided the initial frequency Ω0 " 1, the dominant piece of the constant term, b0, is
(MΩ0)

2

3 , so this term can be used to estimate M . Similarly, the dominant piece of 2b0 − 3b1

is 4χ (MΩ0), so this can be used to estimate χ, and that estimate of χ can be used to improve

the estimate of M from b0. The dominant piece of b0 − b1 + 3b2 is (9 + χ2 + q) /2 (MΩ0)
4

3 ,
so this can be used to estimate the excess quadrupole moment q and so on. In the same
way, if an eccentric inspiral is observed in a regime where the initial frequency is small (and
hence the frequency at capture was also small), we can use the same type of expansion and
use combinations of the coefficients to successively extract each multipole moment and the
initial eccentricity. To do this requires an expansion of e2 − e2

0 as a function of Ωφ/Ω0 − 1.
The necessary derivatives de2/d(MΩφ) are known in the weak-field, and to lowest order
in the multipoles (see, for example, reference [22]). However, this calculation is somewhat
involved, so we leave it for a future paper.
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Orbital-plane precession
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FIG. 19: Difference between orbital-plane precessions in a bumpy spacetime with χ = 0.9 and the

Kerr spacetime with χ = 0.9, ∆pz(Ωφ, q) = pz(Ωφ, q) − pz(Ωφ, q = 0).

from large distances. Most astrophysically relevant orbits are regular and appear to possess
an approximate fourth integral of the motion, and the orbits are tri-periodic to high accu-
racy. The deviations of the central body from Kerr then manifest themselves only in the
changes in the three fundamental frequencies of the motion and the relative amplitude of
the different harmonics of these frequencies present in the gravitational waves. For nearly
circular, nearly equatorial orbits, the dependence of the precession frequencies on the orbital
frequency is well fit by a combination of a weak field expansion that encodes the multipole
moments at different orders, plus a term that diverges as the innermost stable circular orbit
is approached. The frequency of the ISCO and its nature (whether it is defined by a radial
or vertical instability) is another observable signature of a non-Kerr central object.

To derive these results, we have focussed on a particular family of spacetimes due to
Manko and Novikov [8]. However, we expect the generic features of the results in the weak
field and as the ISCO is approached to be true for a wide range of spacetimes. Chaos has been
found for geodesic motion in several different metrics by various authors [9, 10, 11, 12, 13].
In all cases, however, the onset of chaos was qualitatively similar to what we found here
— it occurred only very close to the central object, and for a very limited range of orbital
parameters. The conclusion that gravitational waves from ergodic EMRIs are unlikely to be
observed is thus probably quite robust.

Precessions for spacetimes that deviate from the Kerr metric have also been considered
by several authors [2, 6, 7]. Our results agree with this previous work in the weak-field as it
should. However, the results in the present paper are the first that are valid in the strong-
field since previous work was either based on a weak-field expansion [2] or a perturbative
spacetime [6, 7]. The main feature of the precessions in the strong-field — the divergence of
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Summary
Advanced LIGO could detect a few IMRIs per year
Eccentricities will be low, circular waveforms can be used 
for detection (But should we use EMRI waveforms?  Hybrid 
waveforms? ...? 
Gravitational waves from EMRIs should make it possible to 
test whether the central body [SMBH] is a Kerr black hole
Chaos in a non-Kerr spacetime would be an obvious smoking 
gun, but chaotic regions are probably not accessible
Location of ISCO, periapsis precession, and orbital-plane 
precession are possible observables indicating bumpiness

Frequency evolution over inspiral would be another 
observable, but more work is required



Do I really believe that 
IMBHs exist and MBHs are 

not black holes?
I don’t know.  But it’s dangerous to assume that 
one will see only what one expects to see.  We 
should be prepared to test our assumptions.

Every time a new part of the electromagentic 
spectrum was accessed (radio-astronomy, X-rays, 
etc.), something unexpected was seen.  
Gravitational waves are a new window to the 
universe: expect to see the unexpected!


