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What is the “no-hair 
theorem”?



What is the “no-hair 
theorem”?

idea taken from Daniel Shaddock



What is the “no-hair 
theorem”?

Stationary, vacuum, asymptotically flat spacetimes 
in which the singularity is fully enclosed by a 

horizon with no closed timelike curves outside the 
horizon are described by the Kerr metric



The no-hair theorem in 
English

“Black holes have no hair” means that all 
higher-order mass and current multipole 
moments are uniquely determined by the 
black hole mass and spin

Conversely, an object with hair is one for 
which

The “no-hair theorem” is a mathematical 
statement, so the title is a bit of a 
misnomer...



New title: do supermassive 
black holes have hair?

Supermassive black holes (SMBHs) are assumed to exist 
in the cores of most galaxies...

But are they really black holes?

Could they be boson stars, or naked singularities, or...?

Need to measure 3 multipole moments to test 
“Kerrness”, 4 to test if an object is a boson star

Search for exotic massive compact objects, test of 
cosmic censorship conjecture, null hypothesis test of 
the no-hair theorem...



How can we measure the 
SMBH multipole moments?
Extreme-mass-ratio inspirals (EMRIs) are inspirals of 
stellar-mass compact objects (white dwarfs, neutron 
stars, stellar-mass black holes) into SMBHs under the 
influence of radiation reaction from gravitational-
wave (GW) emission

Information about the spacetime structure and the 
orbit should be contained in the GWs; how do we 
access it?  

EMRIs are great probes 
of the strong-field regime 
(# cycles ~ M/m)



GW detection with Michelson-
type interferometers



LIGO
4 km long arms

Typical strains         
h = ΔL/L ~ 10-21-10-22

Needs to measure ΔL 
= hL ~ 10-17 m

Peak sensitivity at 
frequency ~100 Hz

Sources: stellar-mass 
binaries (NS, BH)



LISA



LISA

Peak sensitivity at frequency ~ 1 mHz

Typical sources: SMBH binaries, galactic WD 
binaries, EMRIs
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FIG. 4: Power spectral density of one of the unequal arm Michelson TDI channel. It contains 1 MBH inspirals at luminosity
distances of 3.3 Gpc and 1 EMRI at luminosity distances of 2.3 Gpc. The duration of the EMRI was taken to be one and a
half years. The galactic binary realisation used here was drawn from the distribution described in [245]

A second approach is to use time-frequency methods, i.e., divide the data stream into segments of a few weeks in
length, perform a Fourier transform on each and then analyse the resulting spectrogram. A simple method that looks
for unusually bright pixels in binned versions of this spectrogram could detect typical EMRI signals at about half the
distance of the semi-coherent search, but at a tiny fraction of the computational cost [115, 319]. An improved method
that considers clustering of bright pixels in the binned spectrograms (the Hierarchical Algorithm for Clusters and
Ridges), has slightly further reach, and also more potential for parameter extraction [114]. While more work needs
to be done, template-free techniques could detect as many as one tenth of the EMRI sources in the data stream. A
typical spectrogram for an EMRI signal is presented in Fig. 5 for which the amplitude of the signal at plunge was
normalised to one.

The third approach that has been explored is to use Markov Chain Monte Carlo (MCMC) techniques. The MCMC
approach essentially carries out fully coherent matched filtering, but does so in an intelligent way, reducing the number
of waveform templates that have to be considered. MCMC methods are being explored extensively for application
to all aspects of LISA data analysis [65, 310, 320]. In the context of the EMRI search, the MCMC approach has
been found to work well when searching for a simple model EMRI signal in a short stretch of LISA data [295]. The
exact reach of the MCMC search has not yet been properly assessed. Given infinite computing resources, the MCMC
would eventually return the posterior probability function for the source parameters. The ability to correctly identify
sources then depends on the shape of this posterior, which depends on both the signal-to-noise ratios of the sources
and the structure of the waveform template space. These are the same properties that determine the detection limit of
a fully-coherent matched filtering search, so it is plausible that an MCMC search with infinite computing power could
achieve the same range as the fully coherent matched filtering approach. However, the MCMC suffers from the same
computational constraints as the fully coherent search, and these will limit the ability of an MCMC search to sample
the posterior. Peaks in the posterior will have to be larger to be detected, and sources will have to be correspondingly



EMRI sights and sounds

Jonathan Gair

EMRI sounds



Observing deviations 
from Kerr with EMRIs

LISA can detect tens to thousands of EMRIs

Ryan’s theorem [1995]: GWs from nearly circular, 
nearly equatorial orbits in stationary, axisymmetric 
spacetimes encode all of the spacetime multipole 
moments... in principle

Can we extend this theorem?  Are there obvious 
observable imprints of an anomalous, non-Kerr 
quadrupole moment (a “bumpy” spacetime)?  

Are energy E, angular momentum Lz and Carter 
constant Q conserved in a bumpy spacetime?



Geodesics in bumpy 
spacetimes

Use Manko-Novikov bumpy spacetime 

C code - geodesic equations:

Check conservation of E, Lz, 4-velocity norm

Equations might not separate as in Kerr

Is there a full set of integrals of motion?



Poincare maps

Check if spacetime has a full set of integrals of 
motion

Plot dρ/dt vs. ρ for z=z0 crossings

Phase space plots should be closed curves for all 
z0 iff there is a third isolating integral



Poincare maps for motion in 
Newtonian potential with 
hexadecapole moment

M2=10 M0;  M4=400 M0 Li



Poincare map in a bumpy 
spacetime

that traversed the neck more than once. Further adjustment of the orbital parameters causes
the neck to widen and eventually disappear. At that stage, most of the orbits appear to be
regular, but orbits that pass very close to the inner edge of the merged region (i.e., close to
the CTC zone) have not been fully investigated.

An alternative explanation of these results [19] is that the geodesic equations are nu-
merically unstable in the inner region, and therefore small numerical round-off errors in the
integration routines are driving the orbits away from their true values. Once again, this
distinction is not relevant observationally. An astrophysical system harboring an EMRI will
not be isolated. The gravitational perturbations from distant stars etc. will serve the same
role in perturbing the orbits as numerical errors might on a computer. The end result —
that the orbit is apparently ergodic — is the same.
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FIG. 6: Poincare map for a geodesic in the outer region of Fig. 4.

2. Frequency Component Analysis

The above conclusions are supported by a frequency-domain analysis of the ρ and z
motion in the two regions. The absolute values of Fourier transforms of ρ(t) and z(t) are
plotted in Figures 8 and 9. Fig. 9 shows an absence of clearly identifiable frequency peaks
for geodesics in the inner region, a result consistent with full-blown chaos. By contrast,
Fig. 8 shows discrete frequency peaks in the outer region. Generally such frequency peaks,
corresponding to harmonics of a few fundamental frequencies, occur in problems with a full
set of isolating integrals. We find that the frequency components measured for the ρ and z
motion in the outer region can be represented as low order harmonics of two fundamental
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E=0.95, Lz=-3, a/M=0.9, q=0.95



Allowed regions for 
bound orbits

Effective potential

z

ρ
E=0.95, Lz=-3, a/M=0.9



Allowed regions for 
bound orbits
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Allowed regions for 
bound orbits

Effective potential
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Poincare map in a bumpy 
spacetime, second look

that traversed the neck more than once. Further adjustment of the orbital parameters causes
the neck to widen and eventually disappear. At that stage, most of the orbits appear to be
regular, but orbits that pass very close to the inner edge of the merged region (i.e., close to
the CTC zone) have not been fully investigated.

An alternative explanation of these results [19] is that the geodesic equations are nu-
merically unstable in the inner region, and therefore small numerical round-off errors in the
integration routines are driving the orbits away from their true values. Once again, this
distinction is not relevant observationally. An astrophysical system harboring an EMRI will
not be isolated. The gravitational perturbations from distant stars etc. will serve the same
role in perturbing the orbits as numerical errors might on a computer. The end result —
that the orbit is apparently ergodic — is the same.
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FIG. 6: Poincare map for a geodesic in the outer region of Fig. 4.

2. Frequency Component Analysis

The above conclusions are supported by a frequency-domain analysis of the ρ and z
motion in the two regions. The absolute values of Fourier transforms of ρ(t) and z(t) are
plotted in Figures 8 and 9. Fig. 9 shows an absence of clearly identifiable frequency peaks
for geodesics in the inner region, a result consistent with full-blown chaos. By contrast,
Fig. 8 shows discrete frequency peaks in the outer region. Generally such frequency peaks,
corresponding to harmonics of a few fundamental frequencies, occur in problems with a full
set of isolating integrals. We find that the frequency components measured for the ρ and z
motion in the outer region can be represented as low order harmonics of two fundamental
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E=0.95, Lz=-3, a/M=0.9, q=0.95
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FIG. 7: Poincare map for a geodesic in the inner region of Fig. 4.

frequencies at a high level of precision (1 part in 107 for the first ∼ 10 harmonics). This
multi-periodicity of the geodesics implies that the gravitational waveforms will also be multi-
periodic. Indeed, we find that an approximate gravitational waveform, constructed using
a semi-relativistic approximation for the gravitational-wave emission (as used to construct
Kerr EMRI waveforms in [20]), is also tri-periodic (the third frequency arises from the φ
motion since the observer is at a fixed sky location). The absolute value of the Fourier
transform of the h+(t) component of this gravitational waveform is also plotted in Fig. 8
and is clearly multi-periodic. This periodicity has important consequences for data analysis
and parameter extraction.

3. Comparison to Other Results

Our results are consistent with previous work by other authors who have found chaotic
geodesic motion in various spacetimes. Generally, chaotic motion only occurs in the strong-
field region close to the central object, and for a limited range of geodesic parameters. As
an example, Guéron and Letelier [12] found chaos in a prolate Erez-Rosen spacetime, which
represented a deformation of a Schwarzschild black hole. They demonstrated that, for a
particular value of the energy and angular momentum, when the deformation parameter had
a value k2 = −5, there was a single allowed region of bounded motion, but for k2 = −5.02
the region split into two separate regions. After the split, orbits in the inner region appeared
chaotic while those in the outer region appeared regular. For the merged region, orbits that
passed into the inner part also appeared ergodic while those that were purely in the outer
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Regular outer region
integral.
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FIG. 4: Effective potential for geodesic motion around a bumpy black hole with χ = 0.9, q = 0.95,

E = 0.95, and Lz = 3M . The thick dotted curves indicate zeros of the effective potential. The

trajectory of a typical geodesic in the outer region is shown by a thin curve. The regular pattern of

self-intersections of the geodesic projection onto the ρ−z plane indicates (nearly) regular dynamics.

If |q| is increased from the value shown in Figure 4, the two regions of bound motion
eventually merge. When this first occurs, the “neck” joining the regions is extremely narrow.
Geodesics exist which can pass through the neck, but this requires extreme fine tuning. As
|q| is further increased, the neck gradually widens and eventually disappears. At that stage,
the single allowed region for bound orbits has a similar shape to the outer region of Figure 4.

These general properties of the effective potential seem to be common to all spacetimes
with q > 0 and χ "= 0. More relevant for the EMRI problem is to fix q and χ and to vary
E and Lz . For E = 1 and sufficiently large Lz, there are two regions of allowed motion
bounded away from the origin, in addition to the plunging zone connected to the singularity
at ρ = 0, |z| ≤ 1. The outermost of the allowed regions stretches to infinity and contains
parabolic orbits. The inner region of bounded motion is the analogue of the inner bound
region described above and lies very close to the central object. If the angular momentum
is decreased, while keeping E = 1, the two non-plunging regions get closer together and
eventually merge to leave one allowed region that stretches to infinity. For fixed E < 1
the behavior is qualitatively the same, except that for Lz $ M there is no outer region
(there is a maximum allowed angular momentum for bound orbits of a given energy, as in
the Kerr spacetime). As Lz is decreased, the outer region for bound motion appears and
then eventually merges with the inner region. Decreasing Lz further eventually causes the

11

t
Regular motion in outer region, suggestive of fourth-
degree invariant

Both ρ and z motion consist of harmonics of two 
fundamental frequencies to 10-7



Chaotic inner region

If motion is chaotic for any initial conditions, it is 
chaotic for all initial conditions, but an approximate 
invariant may exist in some cases (invariant tori) [KAM 
Theorem]



Chaos in Gueron-Letelier 
spacetime



Is chaos accessible?

Inner and outer regions appear to merge under 
radiation reaction, but never split

Object starts out in outer, regular region; once the two 
regions are fully merged, motion is regular (but odd 
things may happen when the neck is narrow...)
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FIG. 10: The evolution of the separation ∆ρ between the inner and outer bounded regions in

the equatorial plane along an inspiral in a Manko-Novikov spacetime with χ = 0.9 and q = 0.95.

∆ρ = 0 means that the two regions have merged and there is a single bounded region.

an inspiraling object can never end up in the inner of two allowed regions of bound motion,
where ergodic motion is prevalent. Secondly, inspirals always start out in a phase where the
motion is regular. This is very important, since it will allow the systems to be detected in
this early inspiral stage by gravitational-wave detectors using matched filtering or a time-
frequency analysis. The inspiraling object will eventually end up in the merged region formed
after the two regions of bounded motion converge. Both ergodic and regular geodesics exist
in that region, so in principle the particle could find itself on an ergodic orbit. However,
most orbits in the merged region appear to be regular so it would require fine tuning to put
the object onto such a geodesic (e.g., the “neck traversing” geodesics discussed earlier). It
thus seems unlikely that this would occur in practice.

Although these results apply only to the Manko-Novikov family of spacetimes, the con-
clusions are consistent with other examples of chaotic geodesics in relativity. For instance,
in the prolate Erez-Rosen spacetime considered in [12], if an object had arrived in the region
where ergodic motion is observed during the course of an inspiral, its orbital energy and
angular momentum would have been larger earlier in the inspiral. However, if either the
energy or angular momentum is increased from the values that give ergodic motion, the
effective potential changes so that it has only one allowed region, which includes “escape
zones” connected to the central singularity. All geodesics in such a zone plunge into the
central object in a short time so an astrophysical inspiral could not persist through that
zone. We deduce that for that spacetime as well the ergodic region is inaccessible to objects
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Other observable 
signatures of bumpiness
If the orbits are indeed multi-periodic, then the 
spacetime “bumpiness” should be observable via:

1. three fundamental frequencies of gravitational waves

2.harmonic structure of the waves (relative frequencies and 
phases of harmonics)

3.evolution of these with time over inspiral

Further study required to properly analyze inspiral 



Location of innermost stable 
circular orbit (ISCO)

The ISCO frequency (and hence plunge frequency) 
depends on the value of the spacetime quadrupole 
moment
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FIG. 11: Properties of the equatorial ISCO in spacetimes with χ = 0, as a function of q. We show

the ρ coordinate of the ISCO (left panel) and the dimensionless frequency of the orbit at the ISCO

(right panel). As described in the text, the ISCO radius has three branches, depending on whether

it is determined by one of the two branches of radial instability or the branch of vertical instability.

These branches are indicated separately in the diagram. For values of q where all three branches

are present, the dashed line denotes the “OSCO” and the dotted line denotes ρ̃ISCO as discussed

in the text. Allowed orbits lie above the curve in the left panel, and below the curve in the right

panel.

comparatively small deviations from Kerr.

V. PERIAPSIS AND ORBITAL-PLANE PRECESSIONS

In Section III we saw that astrophysically relevant orbits in the Manko-Novikov space-
time are multi-periodic to high precision. In such cases, there is no smoking-gun signature
that indicates the presence of “bumpiness” in the spacetime. Instead, the imprint of the
spacetime bumpiness will be observationally apparent in the location of the last stable orbit,
as discussed in the previous section, and in the following ways: (1) in the three fundamen-
tal frequencies of the gravitational waves generated while the inspiraling object is on an
instantaneous geodesic orbit; (2) in the harmonic structure of the gravitational-wave emis-
sion, i.e., the relative amplitudes and phases of the various harmonics of the fundamental
frequencies; and (3) in the evolution of these frequencies and amplitudes with time as the
object inspirals. A full analysis of the accuracies that could be achieved in observations
would involve computing gravitational waveforms in the bumpy spacetimes, performing a
Fisher-Matrix analysis to account for parameter correlations, and comparing to a similar
analysis for Kerr. That is beyond the scope of this paper. However, we can examine the
first of these observational consequences by comparing the fundamental frequencies between
the bumpy and Kerr spacetimes.

The complication in such an analysis is to identify orbits between different spacetimes.
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Periapsis precession
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FIG. 17: Difference between periapsis precessions in a bumpy spacetime with χ = 0 and the

Schwarzschild spacetime, ∆pρ(Ωφ, q) = pρ(Ωφ, q) − pρ(Ωφ, q = 0).

the precession (see Eq. (B15) in the Appendix) then gives
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In this kind of expansion the multipole moments again contribute at all orders. However,
provided the initial frequency Ω0 " 1, the dominant piece of the constant term, b0, is
(MΩ0)

2

3 , so this term can be used to estimate M . Similarly, the dominant piece of 2b0 − 3b1

is 4χ (MΩ0), so this can be used to estimate χ, and that estimate of χ can be used to improve

the estimate of M from b0. The dominant piece of b0 − b1 + 3b2 is (9 + χ2 + q) /2 (MΩ0)
4

3 ,
so this can be used to estimate the excess quadrupole moment q and so on. In the same
way, if an eccentric inspiral is observed in a regime where the initial frequency is small (and
hence the frequency at capture was also small), we can use the same type of expansion and
use combinations of the coefficients to successively extract each multipole moment and the
initial eccentricity. To do this requires an expansion of e2 − e2

0 as a function of Ωφ/Ω0 − 1.
The necessary derivatives de2/d(MΩφ) are known in the weak-field, and to lowest order
in the multipoles (see, for example, reference [22]). However, this calculation is somewhat
involved, so we leave it for a future paper.
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Orbital-plane precession

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2  0.25

!
 p

z

M"#

q = -0.5
q = -1

q = -5
q = 0.5

q = 1
q = 5

FIG. 19: Difference between orbital-plane precessions in a bumpy spacetime with χ = 0.9 and the

Kerr spacetime with χ = 0.9, ∆pz(Ωφ, q) = pz(Ωφ, q) − pz(Ωφ, q = 0).

from large distances. Most astrophysically relevant orbits are regular and appear to possess
an approximate fourth integral of the motion, and the orbits are tri-periodic to high accu-
racy. The deviations of the central body from Kerr then manifest themselves only in the
changes in the three fundamental frequencies of the motion and the relative amplitude of
the different harmonics of these frequencies present in the gravitational waves. For nearly
circular, nearly equatorial orbits, the dependence of the precession frequencies on the orbital
frequency is well fit by a combination of a weak field expansion that encodes the multipole
moments at different orders, plus a term that diverges as the innermost stable circular orbit
is approached. The frequency of the ISCO and its nature (whether it is defined by a radial
or vertical instability) is another observable signature of a non-Kerr central object.

To derive these results, we have focussed on a particular family of spacetimes due to
Manko and Novikov [8]. However, we expect the generic features of the results in the weak
field and as the ISCO is approached to be true for a wide range of spacetimes. Chaos has been
found for geodesic motion in several different metrics by various authors [9, 10, 11, 12, 13].
In all cases, however, the onset of chaos was qualitatively similar to what we found here
— it occurred only very close to the central object, and for a very limited range of orbital
parameters. The conclusion that gravitational waves from ergodic EMRIs are unlikely to be
observed is thus probably quite robust.

Precessions for spacetimes that deviate from the Kerr metric have also been considered
by several authors [2, 6, 7]. Our results agree with this previous work in the weak-field as it
should. However, the results in the present paper are the first that are valid in the strong-
field since previous work was either based on a weak-field expansion [2] or a perturbative
spacetime [6, 7]. The main feature of the precessions in the strong-field — the divergence of
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Summary
Gravitational waves from EMRIs should make it 
possible to test whether the central body [SMBH] is 
a Kerr black hole

Chaos in a non-Kerr spacetime would be an obvious 
smoking gun, but chaotic regions are probably not 
accessible

Location of ISCO, periapsis precession, and orbital-
plane precession are possible observables indicating 
bumpiness

Frequency evolution over inspiral would be another 
observable, but more work is required



Do I really believe that 
SMBHs are not black holes?

I don’t know.  But it’s dangerous to assume that 
one will see only what one expects to see.  We 
should be prepared to test our assumptions.

Every time a new part of the electromagentic 
spectrum was accessed (radio-astronomy, X-rays, 
etc.), something unexpected was seen.  
Gravitational waves are a new window to the 
universe: expect to see the unexpected!


