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Abstract

Identifying the properties of the first generation of seeds of massive black holes
is the key to understanding the merger history and growth of galaxies. Mergers
between ∼100M� seed black holes generate gravitational waves in the 0.1–
10 Hz band that lies between the sensitivity bands of existing ground-based
detectors and the planned space-based gravitational wave detector, the Laser
Interferometer Space Antenna (LISA). However, there are proposals for more
advanced detectors that will bridge this gap, including the third generation
ground-based Einstein Telescope and the space-based detector DECIGO. In
this paper, we demonstrate that such future detectors should be able to detect
gravitational waves produced by the coalescence of the first generation of light
seed black hole binaries and provide information on the evolution of structure
in that era. These observations will be complementary to those that LISA will
make of subsequent mergers between more massive black holes. We compute
the sensitivity of various future detectors to seed black hole mergers, and use
this to explore the number and properties of the events that each detector might
see in three years of observation. For this calculation, we make use of galaxy
merger trees and two different seed black hole mass distributions in order to
construct the astrophysical population of events. We also consider the accuracy
with which networks of future ground-based detectors will be able to measure
the parameters of seed black hole mergers, in particular the luminosity distance
to the source. We show that distance precisions of ∼30% are achievable, which
should be sufficient for us to say with confidence that the sources are at high
redshift.
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1. Introduction

It is generally accepted that the massive black holes (MBHs) found in the centres of most
galaxies grow via accretion and via mergers following mergers between their host galaxies.
However, little is known about the seeds from which MBHs grow [1]. The seeds could be
massive (i.e., ∼105M�), in which case the first epoch of mergers between galactic black holes
at high redshift will generate gravitational waves (GWs) that could be detected by the future
space-borne detector LISA [2]. However, these seeds could also be light (i.e., ∼100M�) and,
in that case, the GWs generated during these first mergers will be at frequencies between
the sensitive bands of LISA and the ground-based instruments currently in operation—LIGO,
Virgo and GEO 600 [3–5], or their upgraded advanced versions. In this paper, we show that
third-generation ground-based interferometers and second-generation space-based detectors
may be able to fill this gap and directly probe the first mergers between light MBH seeds.

Light seed black holes might be produced as the remnants of pop III stars [1, 6]. Models
including light seeds predict dozens of MBH binary (MBHB) coalescences per year in the
mass range ∼102–106M� [7]. Here and elsewhere, we will stretch the definition of MBH
to mean any black hole in the centre of a dark matter halo. These events are mostly at high
redshift, z � 3, and therefore only events with total mass �103M� will be accessible to
LISA. To observe systems in the 10–103M� range will require a GW detector sensitive to
frequencies in the 0.1–10 Hz range. This might be achieved in space by second-generation
instruments such as the Big-Bang-Observer [8], DECIGO [9] or ALIA [10], or on the ground
by third-generation interferometers. In this paper, we will use DECIGO as an example of a
future space-based detector, and the Einstein gravitational-wave Telescope (ET) [11, 12] as an
example of a future ground-based detector. This choice was motivated by the fact that ET is
currently undergoing a design study within Europe, and a technology demonstration mission
for DECIGO is currently under development in Japan. DECIGO is a very ambitious mission
requiring new technology and so the timescale is rather uncertain, but at present the launch
target is ∼2024. The timetable for ET is also rather uncertain, but construction will start
no earlier than ∼2018. We will demonstrate that these instruments will have the capability
to detect seed black hole binaries, and we will discuss whether these observations could tell
us definitively that we are observing light seeds produced by pop III stars. We have already
estimated the seed black hole event rates for ET [13] as input for the design study, but in this
paper we compare and contrast these results with those for DECIGO, and provide additional
details regarding the distribution of the detectable sources and parameter-estimation accuracy.

This paper is organized as follows. In section 2, we describe our calculations, including
the astrophysical model used to construct the event populations, the waveform models used
and the sensitivity curves of the various instruments. In section 3, we provide details of the
detectable seed black hole merger events, including the number of events and the mass and
redshift distributions of events. In section 4, we discuss the parameter-estimation accuracy that
might be achieved for these systems by a network of third-generation ground-based detectors,
before summarizing our conclusions in section 5.

2. Event rate calculation

2.1. Astrophysical models for Pop III seed growth

To generate event populations, we trace the galaxy merger hierarchy using Monte Carlo merger-
tree realizations built on the extended Press–Schechter formalism [14], using simulations
described in detail in [15, 16]. In these simulations, dark matter halos are populated with
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∼100M� seed black holes at redshift z ≈ 20, and it is assumed that these black holes merge
as their host halos merge, and accrete mass efficiently. In the present work, we assumed a
standard LCDM cosmology with WMAP 1 year parameters [17] and considered two variants
of the Pop III seed model. In both cases, we used the same merger history for the dark-matter
halos and assumed that the seeds accrete at the Eddington limit during each merger episode, but
the models differed in the initial mass-distribution of the seeds: (i) the VHM,ems (Volonteri–
Haardt–Madau (VHM) with equal-mass seeds) model assumes equal 150M� seeds; (ii) the
VHM,smd model (VHM with seed-mass distribution) takes the seed-mass distribution to be
uniform in log-mass for masses in the range 10–600M�. We have also studied two further
scenarios that differ in the model of accretion onto the seeds, using prescriptions in [18, 19].
Results from all four scenarios were considered for the ET study in [13], but we now restrict
to the two representative models VHM,ems and VHM,smd to avoid overloading the figures in
this paper.

These models produce event populations that are consistent with observational constraints
at z < 3 from the x-ray and optical quasar luminosity function and from the observed faint
x-ray counts of AGNs [16]. The models predict ∼50 MBHB coalescences per year in the
Universe when summed over all black hole masses, but uncertainties in the assumptions of
the model could change this by a factor of a few either way. We are using these models
to study black holes at z > 5, but they have been tuned to reproduce observations at lower
redshift, z < 3. Indeed, accretion onto light black holes may be very inefficient [20, 21],
which adds further uncertainties to the picture. However, we are using these specific models
only to indicate the potential of future GW observations as a probe of seed black holes. Our
results are not designed to be robust predictions of the event rates given our present limited
understanding of the details of the physical processes involved.

2.2. Signal-to-noise ratio and parameter-estimation accuracy calculations

We compute signal-to-noise ratios (SNRs), ρ, for these sources using the usual expression,
ρ2 = 〈h|h〉, where 〈·|·〉 is the noise-weighted inner product

〈a|b〉 = 4Re
∫ ∞

0

ã∗(f )b̃(f )

Sn(f )
df (1)

in which h̃(f ) is the Fourier transform of the waveform and Sn(f ) is the one-sided power
spectral density of the noise in the detector. To assess parameter-estimation accuracies, we
compute the inverse of the Fisher information matrix (FIM)

�ij =
〈

∂h

∂λi

∣∣∣∣ ∂h

∂λj

〉
, (2)

where λi denotes the model parameters. When considering multiple detectors in a network,
the above expressions are still valid if the inner product is replaced by the sum of the inner
products over the individual detectors.

2.3. Waveform model

To model the gravitational waves generated by MBHB mergers, we use the phenomenological
waveform model (IMR) described in [22]. This waveform model includes the inspiral, merger
and ringdown radiation in a consistent way using a prescription of the form

u(f ) ≡ Aeff(f ) exp(i�eff(f )), Aeff ≡ C

⎧⎨
⎩

(f/fmerg)
−7/6 if f < fmerg

(f/fmerg)
−2/3 if fmerg � f < fring

wL(f, fring, σ ) if fring � f < fcut.

(3)
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Figure 1. Comparison of SNRs computed from IMR and EOBNR models, as a function of
redshifted total mass Mz and for two different choices of mass ratio η = 0.16 and η = 0.25.
Events are at a fixed luminosity distance of 6.61 Gpc, corresponding to z = 1, and we are
computing the SNR for one 10 km right-angle detector with the ET sensitivity.

Expressions for fmerg, fring, fcut, �eff(f ), C,w and L(f, fring, σ ) are given in equations
(4.14)–(4.19) and tables 1–2 of [22]. For these sources, much of the inspiral is outside
of the range of ground-based detectors like ET, so it is necessary to include the contributions
from the merger and ringdown in order to accumulate a significant SNR. The waveforms are
functions of the redshifted total mass of the source, Mz = (1 + z)(M1 + M2) ≡ (1 + z)M ,
and the symmetric mass ratio, η ≡ M1M2/(M1 + M2)

2. In the present calculation, we have
used the coefficients from the original paper [22], although updated coefficients are available
[23]. We have verified that the SNRs computed from the two sets of coefficients are nearly
identical.

As a check of our results, we also computed the SNR for events using the effective-1-
body-numerical-relativity (EOBNR) waveform family introduced by Buonanno et al [24]. A
comparison of the ET SNRs is shown in figure 1. For comparable mass ratios, η ∼ 0.25, the
SNRs predicted by the EOBNR waveforms are somewhat higher than the IMR SNRs (by up
to ∼25% when the merger and ringdown phases dominate the SNR), while for asymmetric
mass ratios, η � 0.16, they tend to be somewhat lower. However, neither waveform family
has been shown to be valid for η < 0.16. These comparisons give us confidence that the
detection-rate estimates quoted here are reasonably trustworthy.

2.4. Detector model

We consider SNRs and event rates for LISA [2], DECIGO [9], Advanced LIGO [25] and ET. In
addition, we present results for two different ET configurations—a ‘broad-band’ configuration
as described in [12] which we refer to as ‘ET’ and which was used to obtain the results shown
in figure 1, and a ‘xylophone’ configuration which trades off sensitivity at higher frequency
for improved sensitivity near 10 Hz and was described in [26]. For the SNR calculations, we
compute sky- and orientation-averaged SNRs, which are obtained by computing the SNR for
an optimally oriented source using equation (1) and dividing by 2.26. The specific detector
therefore enters only through the specification of the noise spectral density. The noise spectral
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Figure 2. Sensitivity curves for the detectors considered in this study. The LISA and DECIGO
curves include a factor of 4/3 so that they represent equivalent right-angle interferometers.

densities we assumed for each detector are illustrated in figure 2. For LISA and DECIGO, the
Sh(f ) illustrated is for an equivalent right-angle interferometer, obtained by multiplying the
usual Sh(f ) for a 60◦ interferometer by 4/3. This ensures that the sky averaging for these
detectors is done in exactly the same way as the others. The DECIGO noise curve is for a
single channel of one DECIGO-like interferometer. The target DECIGO design calls for four
interferometers, which would enhance the SNR by a factor of 2 compared to that in a single
interferometer.

The Einstein Telescope will be a 10 km scale laser interferometer. A key target in the
ET design is the capability to measure polarization at a single site. This is achievable by
having two coplanar detectors at the site, offset by 45◦. The currently favoured design is for
a triangular facility containing three 10 km 60◦ detectors, as this has lower facility costs, and
we will refer to this as a ‘single ET’. The spectral density shown for both ET configurations in
figure 2, and which we use in our SNR calculations, is for a single right-angle 10 km detector
[11]. The sensitivities of two right-angle 10 km detectors and a ‘single ET’ are factors of

√
2

and 3/2 higher, respectively, than that of one right-angle 10 km detector. In section 4, we
will present estimates of the accuracy with which a network of ET-like detectors can measure
the parameters of seed black hole mergers. We consider four ‘third generation network’
configurations—(i) one ET at the geographic location of Virgo, plus a second right-angle
10 km detector at the location of LIGO Hanford or Perth (Australia), (ii) as configuration (i)
plus a third 10 km detector at the location of LIGO Livingston, (iii) as configuration (i) but
with the Hanford/Perth 10 km detector replaced by a second ET and (iv) three ETs, one at
each of the sites.

3. Detectable events

3.1. Sensitivity

In figure 3, we show how the SNR in each of the detectors varies as a function of the redshifted
total mass for sources at fixed luminosity distance and for two different values of the mass
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Figure 3. Signal-to-noise ratio versus redshifted total mass, for each of the detectors and for two
different mass ratios, η = 0.16, 0.25. All sources are at a fixed luminosity distance of 6.61 Gpc.

ratio, η = 0.16, 0.25. Advanced LIGO is unsurprisingly beaten at all masses by ET, but ET
and LISA are complementary in that ET is more sensitive for Mz < 104M�, while LISA is
better above that mass. This is advantageous, as these two detectors may well be operating
concurrently. DECIGO beats every other detector for all masses. However, this relies on
extrapolation of the DECIGO noise curve over many decades of frequency, and it is not yet
clear how valid that extrapolation will be. A less ambitious second generation space-based
detector such as ALIA [10] would be most sensitive for 103M� � Mz � 106M�, but would
be beaten by ET/LISA below/above that range. The xylophone configuration significantly
improves ET’s sensitivity for black hole mergers with Mz ∼ 1000M�, as the instrumental
noise is significantly reduced at precisely the frequency where most of the SNR is accumulated
for these systems. This is very important for the seed black hole event rate. We note that the
SNRs of events at redshift z = 1 will be ρ � 103 for ET, ρ � 104 for LISA and ρ � 105 for
DECIGO.

3.2. Event rates

To estimate the number of events that each of the detectors would see, we used 1000 merger-
tree realisations for each of the two seed black hole initial mass distributions described in
section 2 and constructed a catalogue of the merger events that occurred over three years in
each case. For each event, we computed the matched filtering SNR that would be obtained
for that event by each detector, using equation (1). Specifying the SNR threshold that will be
required in the detector for an event to be resolvable then determines the number of events
that will be observed. The event rate is shown as a function of the SNR threshold in figure 4.
For the ET configurations, the SNR threshold is the SNR in a single right-angle interferometer
with the target sensitivity, and for LISA/DECIGO it is the SNR in a single Michelson channel.
The SNR threshold that is likely to be required is ∼8 for the network of detectors, which
corresponds to SNRs in a single interferometer of 5.3 for a single ET, or SNRs of 4.8, 3.9, 3.8
and 3.1 for the ET network configurations (i)–(iv) described in section 2.4, or an SNR of 5.7 in
a single Michelson channel of LISA/DECIGO (assuming that these instruments can be thought
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Figure 4. Number of events detected by each detector in three years, as a function of signal-to-noise
ratio threshold and for two different astrophysical models—VHM,ems and VHM,smd.

to consist of two independent data channels only). The SNR threshold of 8 may be optimistic
when other considerations are taken into account, in particular foreground confusion from
other gravitational wave sources. This figure illustrates the sensitivity of the event rate to the
threshold that is ultimately required.

Advanced LIGO is not included in figure 4 because it will not detect any events in these
astrophysical scenarios. We see from figure 4 that an ET network will detect between a few
and a few tens of events, which will be mostly early mergers between light seeds; LISA will
detect several tens of events, which will be mostly mergers between heavier black holes that
have already undergone several merger events; and even a single DECIGO-like interferometer
will provide a complete survey of these events, which is why the DECIGO curves are flat
for all values of the SNR threshold shown in the plot. We note that the ET xylophone
configuration would detect significantly more seed black hole events at relatively high SNR
than the broadband ET configuration. This should be an important consideration when final
design decisions are made. We emphasize that these results should not be considered to be
robust predictions for the event rates, due to the uncertainties in the astrophysical models, but
are designed to illustrate the potential science that these future detectors could do.

3.3. Mass/redshift distribution of detected events

The event rate alone does not provide a proper comparison between the different detectors,
since it suppresses information about the characteristics of the events. In figure 5, we show
the mass and redshift distributions of events detected by each instrument for the VHM,ems
and VHM,smd scenarios. Each curve is normalized so that the integral under the curve is
equal to 1, and the mass distribution is for the intrinsic mass, M, not the redshifted mass.
These plots reflect the complementarity of the detectors noted earlier. LISA and ET are almost
completely complementary in mass—ET/LISA detects events only below/above ∼2000M�—
but probe a comparable range in redshift. The distribution of DECIGO events follows the true
astrophysical distribution of mergers—most mergers are between ∼500M� black holes in the
VHM,ems scenario, but the mass distribution is quite flat in the VHM,smd case, in the range
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Figure 5. Intrinsic mass (left panels) and redshift (right panels) distributions of events for each
detector, for the VHM,ems scenario (upper panels) and the VHM,smd scenario (lower panels).
These were computed using all events with SNR greater than 5 in a single 10 km right-angle
interferometer for the Einstein Telescope and SNR greater than 10 in a Michelson channel for
LISA. The larger SNR threshold was used for LISA since we will not have the benefit of multiple
detectors in that case. The choice of SNR threshold for DECIGO is not important since all events
are detected with SNR greater than 25.

∼102–105M�. In both cases, the redshift distribution of events is quite flat and extends up
to z ≈ 15. If DECIGO was replaced by ALIA, then it would not be able to detect the tail of
M � 100M� black holes found in the VHM,smd model, leaving only ET able to probe those
systems. ET events are predominantly of low mass ∼10–1000M� in both configurations and
would have redshift z < 10 if it was operated in the broad band mode; if ET was operated
in the xylophone configuration, it would be able to detect mergers out to z ∼ 15 and indeed
would be dominated by events with 10 < z < 15. LISA events are predominantly of high mass
∼103–106M� and redshift z < 10. The coalescences detected by LISA are between black
holes that have already undergone several merger events, while ET probes the earliest mergers
between seed black holes. Thus, LISA and ET together will probe the full merger history of
galaxies in these scenarios. DECIGO or ALIA by themselves would have the same capability,
which is an important scientific motivation for building these ambitious instruments.

4. Accuracy of parameter estimation

It is known that LISA (and DECIGO) will provide highly accurate measurements of the
parameters of the long-lived mergers of black holes with M � 105M� [27]. However, for the
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Table 1. Parameter-estimation accuracy for various ET-network configurations for sources at a
fixed signal-to-noise ratio of 8. The values reported for Mz and η are statistical averages, while
those for DL are the values at the 68th percentile of the error distribution.

	ln DL (VHL) 	ln DL (VPL)

Mz η 	ln Mz 	ln η (i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

100M� 0.15 0.1% 0.05% 37% 27% 25% 23% 36% 27% 25% 23%
100M� 0.25 0.2% 0.06% 37% 28% 24% 22% 36% 26% 24% 22%
500M� 0.15 0.9% 0.4% 41% 31% 29% 25% 41% 30% 28% 26%
500M� 0.25 0.1% 0.1% 37% 32% 28% 24% 35% 30% 28% 26%

1000M� 0.15 2% 1% 53% 33% 31% 26% 43% 33% 32% 27%
1000M� 0.25 0.3% 0.1% 42% 31% 31% 27% 34% 30% 30% 26%

first generation of mergers with M � 103M�, the source spends little time in the sensitive
frequency band of any of the detectors. The intrinsic parameters (masses etc) of the source
affect the waveform phasing and hence should be determined accurately from the observed
waveform. However, the waveform at the detector also depends on six extrinsic parameters—
two sky-position angles, the orbital phase at a fiducial time t0, the wave polarization angle ψ ,
the source inclination angle with respect to the line of sight ι and the luminosity distance to the
source DL. These affect only the amplitude of the response in the detector. Any number of
colocated and coplanar detectors provides only four amplitude measurements for a short-lived
event—two quadratures in two detectors at 45◦ to each other. Thus, to measure all the source
parameters, we need at least one other non-colocated detector operating concurrently. The
full DECIGO mission aims to have four interferometers, two of which would be colocated
in a ‘star-of-David’ configuration, to allow stochastic background measurements. If this
configuration is realized, the DECIGO network will be able to make high-precision parameter
estimates for seed black hole mergers. On the ground, parameter estimates could be obtained
from a network of ETs, as described in section 2.4, with up to three detectors sited at the
geographical locations of Virgo, LIGO Hanford and LIGO Livingston (VHL) or Virgo, Perth
and LIGO Livingston (VPL).

In order to assess the accuracy of parameter estimates that would be obtained by a ground-
based network, we have performed a Monte Carlo over possible choices of the extrinsic
parameters, for fixed intrinsic parameters. We carried out two different simulations—one
in which the SNR of the source was fixed at ρ = 8 and the other in which the luminosity
distance to the source was fixed. For these simulations, we used the standard broad-band ET
noise curve rather than that of the xylophone configuration. In tables 1–2, we summarize
these results by listing the error at the upper 68th percentile of the distribution derived from
the Monte Carlo simulation. We consider the upper percentile only since we are only concerned
about errors that are particularly large. In figure 6, we also show the full distribution of the
errors in the luminosity distance computed from the simulations. As expected, we find that the
redshifted mass Mz and the symmetric mass ratio η are determined very well, to an accuracy
better than 1% even for sources near the threshold ρ = 8. The variation in these errors in
the fixed-distance case comes entirely from differences in SNR as the extrinsic parameters
vary. We should note, however, that the physical waveforms are likely to be different from
the simple model waveforms we have used for parameter estimation here, and will include
additional features such as spins and associated precessions. Ignoring such features could
lead to significant systematic errors, while including them in the waveform family used for
parameter estimation would likely create additional correlations between parameters leading
to a degraded parameter-estimation accuracy (see, e.g., [28]). The distance is not so well
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Table 2. As table 1, but now for sources at a fixed distance of 10 Gpc. In this case, since the SNR varies with choices of extrinsic parameters, we quote errors for Mz, η and DL as the
values at the 68th percentile of the error distribution. We quote only errors for the VPL configuration, as those for the VHL configuration are very similar.

	ln Mz 	ln η 	ln DL

Mz/M� η (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

100 0.15 0.12% 0.11% 0.11% 0.09% 0.008% 0.007% 0.007% 0.006% 37% 26% 24% 17%
100 0.25 0.15% 0.13% 0.13% 0.1% 0.01% 0.01% 0.01% 0.009% 26% 19% 17% 12%
500 0.15 0.5% 0.46% 0.45% 0.4% 0.04% 0.03% 0.03% 0.03% 17% 13% 13% 9%
500 0.25 0.05% 0.04% 0.04% 0.03% 0.01% 0.009% 0.009% 0.007% 12% 8% 8% 6%

1000 0.15 2% 1.6% 1.6% 1.3% 0.14% 0.1% 0.1% 0.09% 30% 19% 18% 12%
1000 0.25 0.17% 0.14% 0.14% 0.11% 0.02% 0.01% 0.01% 0.01% 31% 10% 11% 7%
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determined, and the error distribution is highly non-Gaussian. For some sources, we can
achieve the theoretical best accuracy of 1/ρ, indicated by the hard cut-off at 12.5% in the fixed
SNR distribution. While there is a tail out to large distance errors of 100% or more, for the
majority of cases the errors are smaller than 50%. Our results also allow us to make statements
about the network configuration. We see that only one additional right-angle interferometer
is required to achieve �40% distance precision. Adding a third detector or upgrading the
detectors to ETs only modestly improves these errors to �25% for events close to the SNR
threshold, although the SNR, and hence parameter precision, for a source at a given distance
will be significantly improved. Finally, we note that it does not seem to matter whether the
second detector is at Hanford or in Australia.

To identify an event as a merger between seed black holes, we need to be able to say
that the mass is low, M � 103M�, and the redshift is high, z � 3. Intermediate-mass black
hole binaries could also form at high redshift through runaway stellar collisions in globular
clusters (for more discussion see [13]). While it is not clear at present if it will be possible to
distinguish between events involving black holes formed via these two channels, the distinction
between the mechanisms becomes increasingly arbitrary at higher redshift. What is important
for the light-seed versus heavy-seed debate is to know that ∼100M� black holes existed at
high redshift. The error in M is dominated by the error in z, since we determine the redshifted
mass Mz = (1 + z)M very precisely. We expect to calculate z from the recovered DL and the
concordance cosmology at the time of the observations, so the error in z and hence M will be
comparable to that in DL, i.e., �40%. Thus, we should be able to confidently say that the
events with M ∼ 100M� and z ∼ 5 which dominate the ET detection rate are indeed seed
merger events. One caveat for these conclusions is that the distance errors computed here were
based on the Fisher Matrix, which is known to overestimate the precision of measurements in
the low SNR limit [29]. They should therefore be regarded as optimistic. A proper calculation
would require Monte Carlo simulations to recover the full posterior for a signal injected into
a noisy data stream, which is beyond the scope of the present work. However, the results here
provide a guide to what might be achievable in practice.
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5. Discussion

In this paper, we have explored the capability of future gravitational-wave detectors to probe
the hierarchical assembly of structure in the Universe starting from light seeds of massive black
holes, born during supernovae of population III stars. In the astrophysical scenarios that we
considered, LISA would detect several tens of events, but cannot probe black hole masses below
∼1000M�. While these observations will have some power to distinguish between light-seed
and heavy-seed scenarios (see, e.g., [30]), LISA cannot probe the first generation of mergers.
The Einstein Telescope will complement LISA by detecting a few to a few tens of black hole
mergers per year in the 10–103M� range, detecting the first epoch of mergers and thus directly
probing the mass distribution of the seeds. DECIGO would provide a complete survey of
MBHB mergers occurring over its lifetime. The launch date for this instrument is rather
uncertain, but if it achieves the target of 2024 it may operate at the same time as ET, allowing
simultaneous measurements. More likely, DECIGO will be later than this, in which case the
detections it makes will confirm earlier results from LISA and ET. These future observations
will provide detailed information on the assembly of structure and stringent constraints on
viable models of galaxy formation and growth. The detection of at least one light seed will
itself be of huge significance in constraining the heavy-seed model. Of the two alternative
designs for ET that we have considered, it is quite clear that the xylophone configuration is
to be preferred for the detection of these sources. It not only enhances the event rate, but it
allows ET to detect mergers at higher redshift, which is important for having confidence that
the events are seed mergers. This should be born in mind when the configuration for ET is
finalized.

We have also discussed parameter estimation for these merger events. Measuring the
parameters of the short-lived events with M � 103M� will require a network of concurrently
operating detectors. We have shown that a ground-based network of ET detectors should be
able to measure the redshifted mass and the luminosity distance of the majority of light-seed
merger events to accuracies of �1% and ∼40%, respectively. This should be sufficient for us
to say with confidence that we are observing mergers involving light seeds of massive black
holes at high redshift.

Our results indicate that Advanced LIGO will not detect any events from these sources.
This is in contrast to a prediction made in [31]. However, that previous calculation was
based on a semi-analytic prescription for the black hole merger history which overpredicts the
number of events involving low-mass black holes at low redshift as compared to our merger-
tree calculations. In the model of [31], ET would detect several hundred events rather than
several, which our calculations suggest is very optimistic.

The current work should not be taken as a robust calculation of the properties of the
events that will be observed by future gravitational-wave detectors, but as an indication of the
potential science that these detectors will do. More work is needed to properly quantify exactly
what gravitational-wave observations will tell us about the growth of structure. Nonetheless,
we expect that the calculations described here will be of use to researchers interested in
quantifying such questions in the future.
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