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Abstract
Gravitational waves emitted during intermediate-mass-ratio inspirals (IMRIs)
of intermediate-mass black holes (IMBHs) into supermassive black holes
could represent a very interesting source for the Laser Interferometer Space
Antenna. Similarly, IMRIs of stellar-mass compact objects into IMBHs
could be detectable by the Advanced Laser Interferometer Gravitational-Wave
Observatory. At present, however, it is not clear what waveforms could be used
for IMRI detection, since the post-Newtonian approximation breaks down as an
IMRI approaches the innermost stable circular orbit, and perturbative solutions
are only known to the lowest order in the mass ratio. We discuss the expected
mismatches between approximate and true waveforms, and the choice of the
best available waveform as a function of the mass ratio and the total mass of
the system. We also comment on the significance of the spin of the smaller
body and the need for its inclusion in the waveforms.

PACS numbers: 04.30.−w, 04.25.Nx

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Observational evidence from cluster dynamics and from ultra-luminous x-ray sources suggests
that there may exist a population of intermediate-mass black holes (IMBHs) with masses in the
M ∼ 102–104M� range [22, 27, 39]. Numerical simulations of globular clusters suggest that
IMBHs could merge with numerous lower mass compact objects (COs) during the lifetime
of the cluster [13, 14, 23–26, 28, 38], through a combination of emission of gravitational
radiation, binary exchange processes and secular evolution of hierarchical triple systems. The
evidence of the existence of IMBHs is still inconclusive, however. There is much debate
over the formation of IMBHs, and some of the evidence cited in favor of IMBHs could have
alternative explanations [7, 17]. We refer the reader to [21, 22] for thorough reviews.
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If IMBHs exist, gravitational waves (GWs) generated during mergers of IMBHs with
other compact objects are potentially detectable by existing or proposed GW detectors. In
this paper, we focus on GWs generated during intermediate-mass-ratio inspirals (IMRIs).
Rate predictions for such events are extremely uncertain at present, but several mechanisms
have been proposed that may lead to detectable IMRIs. The next generation of the ground-
based gravitational-wave detector, the Laser Interferometer Gravitational-Wave Observatory
(Advanced LIGO [35]), could detect the GWs generated during an IMRI of a stellar-mass
object (black hole or neutron star, since a white dwarf or a main sequence star would be
tidally disrupted) into an IMBH of mass � 350M� at a rate of few per year [19]. Meanwhile,
if a cluster containing an IMBH starts out sufficiently close to a supermassive black hole
(SMBH) residing in a galactic center, it will sink to the center and, after releasing the IMBH
due to tidal stripping of the cluster [11], will form an IMBH–SMBH binary [20]. This
binary will eventually inspiral under the influence of radiation reaction, creating an IMRI
whose frequencies will make it detectable by a proposed space-based detector, the Laser
Interferometer Space Antenna (LISA [6]) [1]; LISA could detect a few such events per year
[20]. LISA could also detect inspirals of white dwarfs into black holes in the 104–105M�
range with possible electromagnetic counterparts due to white-dwarf tidal disruption [34].

We emphasize that predictions of possible rates of detections of GWs from IMRIs are
highly uncertain and depend on a number of debated assumptions about IMBH formation
mechanisms, dynamics of globular clusters or galactic nuclei, etc. Nonetheless, the scientific
potential of IMRIs involving IMBHs is sufficient to make them interesting candidates for
LIGO and LISA searches. The detection of an IMRI could provide the first confirmation
of the existence of the IMBH in the absence of definitive electromagnetic observations.
Further detections of LIGO IMRIs would make it possible to explore the dynamics of globular
clusters, while LISA IMRIs will additionally elucidate the dynamical processes in galactic
nuclei. However, detection and especially parameter estimation of IMRIs will require the
construction of accurate IMRI waveforms.

In this paper, we analyze the suitability of currently available waveforms for LISA IMRI
detection. Currently, two different types of approximate inspiral waveforms are available.
On the one hand, there are post-Newtonian (pN) waveforms, which are expansions in
the velocity v/c ([8] and references therein). On the other hand, there are perturbative
waveforms for extreme-mass-ratio inspirals (EMRIs) [5, 32] which are expansions in the
dimensionless mass ratio η ≡ M1M2/(M1 + M2)

2. Post-Newtonian waveforms are known to
3.5 pN order ((v/c)7), but the convergence of this series deteriorates at the high velocities
reached near the innermost stable circular orbit (ISCO) where an IMRI spends a significant
number of cycles (this number of cycles scales as 1 over the mass ratio). Meanwhile, EMRI
waveforms are only known to the lowest order in the mass ratio [12, 29], and their accuracy
deteriorates at intermediate mass ratios. The first question one might ask is: at what value
of η does the EMRI waveform become more faithful than the pN waveform? An order-of-
magnitude approach to the answer might proceed as follows. For a moderate value of the
spin of the more massive body, say χ ≡ S1/M

2
1 ≡ a1/M1 ∼ 0.5, the comparable-mass

case is characterized by the orbital angular momentum of the binary at the ISCO dominating
over the spin angular momentum, while in the extreme-mass-ratio inspiral the spin angular
momentum of the massive body dominates over the orbital angular momentum of the binary.
For χ = 0.5, this transition (as computed for a Keplerian orbit at the ISCO) occurs at a mass
ratio of approximately 5:1. But does this necessarily mean that an intermediate mass ratio
of 10:1 or 100:1 or even 1000:1 is faithfully represented by EMRI orbits? In this paper, we
demonstrate that there is a significant range of intermediate mass ratios over which neither the
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pN nor the EMRI waveforms are likely to be faithful, and advocate the urgent need to develop
more suitable IMRI waveforms.

The paper is organized as follows. In section 2, we estimate and compare the errors
inherent in the post-Newtonian and extreme-mass-ratio approximations. In section 3, we
analyze the impact of the spin of the smaller object on the waveform and the need to include
spin–spin coupling for the purposes of signal detection. Finally, in section 4, we discuss the
future prospects for developing an accurate family of IMRI waveforms.

2. Waveform comparison: pN versus EMRI

2.1. Waveforms

To determine the faithfulness of the two approximate waveform families, we should compare
each with the true theoretical waveform, ‘nature’s waveform’. Unfortunately, we do not
have such a waveform at our disposal. Despite the remarkable recent advances of numerical
relativity ([31, 33] and many others), it remains unlikely that long numerical simulations of
inspirals with a mass ratio of 100:1 or 1000:1 will be available in the foreseeable future. In
the absence of a true waveform to compare against, we can estimate the range of validity of
the two approximate waveform families as follows.

To test the range of validity of the post-Newtonian waveform, we compare the
3.5 pN waveform with the 3 pN waveform, following the example of [10]. In the range
of validity, the difference between these two waveforms, i.e. the 3.5 pN term in the expansion,
should serve as a reasonable estimate for the difference between the full waveform and
the approximate post-Newtonian expansion. The point at which the overlap between these
waveforms drops significantly from 1 signifies the end of the range of validity of the post-
Newtonian approximation.

We cannot use a similar trick for EMRI waveforms, since they are not yet available at the
second order, despite significant recent progress [12, 29, 32]. Instead, we estimate the range
of validity of the perturbative approximation that ignores higher order terms in the mass ratio
by comparing the full 3.5 pN waveform with a 3.5 pN waveform that includes only the lowest
order terms in the mass ratio. As the mass ratio is increased, the overlap between the full
and EMRI-fied 3.5 pN waveforms may decrease significantly from 1; this is the mass ratio at
which the EMRI approximation ceases to be reliable.

The time-domain post-Newtonian waveform is given by

h(t) = A(t) ei�; (1)

the time-domain phase � can be expressed in terms of the GW frequency f ≡ 1/(2π) d�/dt

(multiplying equation (235) of [8] by 2 to get the GW phase from the orbital phase):

� = −x−5/2
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+ β
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)
πx7/2

}
, (2)

where M = M1 +M2 is the total mass, C ≈ 0.577 is Euler’s constant, x ≡ (πMf Gc−3)2/3 and
x0 = x(f = 0.1 mHz). We introduced the parameters α and β to distinguish the waveform
families of interest. The ‘base’ waveform uses the full 3.5 pN phase:

�base = �(α = 1, β = 1). (3)

The approximate post-Newtonian waveform has the 3 pN phase:

�pN = �(α = 1, β = 0). (4)

Finally, the approximate EMRI waveform has the 3.5 pN phase expanded to the lowest order
in η only:

�pN = �(α = 0, β = 1). (5)

To compute overlaps of waveforms weighted by the noise power spectral density of
the LISA detector, as described below, it is more convenient to use the frequency-domain
representation of the waveform

h̃(f ) = A(f ) eiψ. (6)

For simplicity, the restricted post-Newtonian waveform is computed via the stationary-phase
approximation (e.g., [30]), and the lowest order Newtonian amplitude is used:

A(f ) = 2

D

(
5μ

96

)1/2

(π2M)1/3f −7/6, (7)

where D is the distance to the source and μ = M1M2/M . The expression for the phase ψ(f )

is (e.g., equation (3.4) of [2])

ψ = 2πf tc − φc − π
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where tc is the time of coalescence (the time where the frequency would formally go to infinity)
and φc is the phase at coalescence. Again, setting α = β = 1 corresponds to ψbase, setting α

to 0 yields ψEMRI and ψpN = ψ(α = 1, β = 0)
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We use the lowest order (0 PN) relationship between time and frequency to determine the
starting frequency for a year-long inspiral signal. We define the dimensionless time variable

 as


 ≡ ηc3

5GM
(tc − t), (9)

where tc is the time of coalescence. Then at 0 PN,


 ≈ 1

256
x−4 =

(
8πGMf

c3

)−8/3

. (10)

2.2. Comparison

We begin the comparison of the approximate waveforms with the ‘base’ waveform by
measuring the number of cycles of difference accumulated over the last year of inspiral
observed by LISA before the inspiraling object reaches the ISCO (or during the time it takes
for the inspiral to proceed from a gravitational-wave frequency of 0.01 mHz to the ISCO, if
that is less than a year). In figure 1, we plot the accumulated cycles of difference for the
pN waveform, (�base − �pN)/(2π), and the EMRI waveform, (�base − �EMRI)/(2π), as a
function of η for several choices of the mass of the central Schwarzschild black hole.

We expect post-Newtonian excess cycles to accumulate near the end of the inspiral, where
v/c becomes significant (v/c ∼ 0.41 near the Schwarzschild ISCO), so that the high-order
pN terms have a sizable contribution.

On the other hand, EMRI excess cycles should be more evenly spread throughout the
inspiral. The error in the lowest order EMRI approximation results in an error in the frequency
evolution of order

δḟ = O(η2), (11)

while the frequency evolution itself scales as

ḟ ≡ df

dt
= O(η). (12)

The accumulated excess cycles thus scale as

δ�EMRI = O((δḟ )T 2) = O(η2)T 2, (13)

where T is the time observation. When the time of observation is limited by the duration of
the LISA observation window, e.g. T = 1 year, the accumulated excess cycles in the EMRI
waveform scale as O(η2). This is indeed the case for extreme mass ratios η � 1, which
explains why even the lowest order EMRI waveforms may be sufficient for LISA EMRI
detections. However, for more rapidly evolving IMRIs, the observation time is limited by the
fixed LISA bandwidth �f :

T ∼ �f

ḟ
= (�f )O(η−1). (14)

Then the accumulated excess cycles actually scale as O(1), so we do not expect EMRI
waveforms to produce a good match in this regime.

Indeed, these are precisely the trends that we observe in figure 1. Post-Newtonian
waveforms accumulate few cycles of difference for large η, where the inspiral proceeds
rapidly through the domain of high v/c, but they accumulate huge excess cycles at low η, when
the inspiraling object spends O(1/η) cycles near the ISCO. EMRI waveforms, meanwhile,
accumulate O(1) excess cycles when η is large enough for the duration of observation to be
limited by the LISA bandwidth rather than by the 1 year observation window.

5



Class. Quantum Grav. 26 (2009) 094036 I Mandel and J R Gair

10 10
5

10
4

10
3

10
2

10
1

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

η

A
c
c
u

m
u

la
te

d
 c

y
c
le

 d
if
fe

re
n

c
e

 

 

3.5 PN vs 3 PN, M=1e4 Msun

3.5 PN vs 3 PN, M=1e5 Msun

3.5 PN vs 3 PN, M=1e6 Msun

3.5 PN vs EMRI, M=1e4 Msun

3.5 PN vs EMRI, M=1e5 Msun

3.5 PN vs EMRI, M=1e6 Msun

Figure 1. The difference in cycles between approximate and base waveforms over the last year
of inspiral before the ISCO (or during the time it takes the GW frequency to increase from
0.01 mHz to the ISCO, if less), as a function of the symmetric mass ratio η. Thick (red) curves
show (�base − �pN)/(2π); thin (blue) curves show (�base − �EMRI)/(2π). Solid, dashed and
dotted curves refer to inspirals into Schwarzschild black holes of 106, 105 and 104 solar masses,
respectively.

Comparing 3.5 PN to 3 PN, we find that there are more cycles of difference at higher
masses for a given η. This is because higher mass systems spend proportionally longer
at higher speeds v/c. Mathematically, this occurs because the 3.5 PN term goes as θ−1/4,
and θ ∝ 1/M , so the difference scales positively with mass. When comparing EMRI-fied
3.5 PN and 3.5 PN, we recall that the cycle differences are accumulated fairly uniformly over
the course of the inspiral; since lower mass systems undergo more cycles of oscillation in total
over 1 year, such systems show a greater phase difference for a given value of η.

We note that we have included points in figure 1 where the phase difference is considerably
larger than one cycle. In this regime, the approximation has broken down and so we clearly
cannot regard �base to be the ‘true’ waveform. However, we include the full range of mass
ratios in the figure to more clearly illustrate the wide range of mass ratios where neither of our
template families can be applied for the full duration of the inspiral.

Although comparing the number of excess cycles provides a good indication of the regime
of validity of the two approximations, a more precise comparison should take the frequency-
dependent instrumental noise into account: after all, if the excess cycles are accumulated at
frequencies at which LISA is insensitive, they may not cause a significant issue for IMRI
detections. We define the overlap of two waveforms h̃(f ) and g̃(f ) as

〈h|g〉 = 4

∫ fISCO

flow

h̃(f )g̃∗(f )

Sn(f )
df, (15)
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3.5 PN vs 3 PN, M=1e4 Msun

3.5 PN vs 3 PN, M=1e5 Msun

3.5 PN vs 3 PN, M=1e6 Msun

3.5 PN vs EMRI, M=1e4 Msun

3.5 PN vs EMRI, M=1e5 Msun

3.5 PN vs EMRI, M=1e6 Msun

Figure 2. The match factors between approximate and base waveforms over the last year of inspiral
before the ISCO (or during the time it takes the GW frequency to increase from 0.01 mHz to the
ISCO, if less), as a function of η. Thick (red) curves show M(hbase, hpN); thin (blue) curves show
M(hbase, hEMRI). Solid, dashed and dotted curves refer to inspirals into Schwarzschild black holes
of 106, 105 and 104 solar masses, respectively.

where g̃∗ denotes the complex conjugate of g̃ and Sn(f ) is the noise power spectral density of
LISA, which includes both the instrumental noise and the unresolvable foreground of galactic
white-dwarf binaries. We took our prescription for the LISA sensitivity curve and the white-
dwarf confusion foreground from [5]. We then define the normalized match of these two
waveforms, M(h, g), as

M(h, g) = 〈h|g〉√〈h|h〉〈g|g〉 . (16)

In figure 2, we plot the matches between pN and EMRI waveforms on the one hand and the
‘base’ waveform on the other. We automatically maximize over possible constant phase shifts
(different values of φc) between two waveforms by taking the absolute value of the overlap
integral instead of the real part in equation (15). We also maximize over different values of
the time of coalescence, tc. Because the way in which the parameter tc enters equation (15)
essentially corresponds to a Fourier transform, it is relatively computationally inexpensive to
do so. We do not, however, maximize over different choices of intrinsic parameters, such as
the masses of the two objects.

We find, again, that EMRI waveforms are more faithful at low η while pN waveforms are
more faithful at high η. For a given value of η, pN waveforms are more generally faithful for a
lower central black-hole mass. This is because the frequency at the ISCO scales as O(1/M),
so for lower masses, the ISCO frequency is too high for LISA to have significant sensitivity
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there; instead, most of the signal-to-noise ratio is contributed by earlier parts of the inspiral,
where v/c is lower and the post-Newtonian approximation is still valid.

The most striking feature of figure 2, however, is that for a wide range of intermediate
mass ratios, 10−5 � η � 10−1 (depending on the total mass), neither the post-Newtonian nor
the extreme-mass-ratio waveforms appear to be valid. It is worth pointing out, however, that
we have not maximized the match factors over the masses, only over the extrinsic parameters tc
and φc. Therefore, either EMRI or pN waveforms could still be an effective waveform family
in the sense that they could densely cover the parameter space of true waveforms without
necessarily matching the true waveforms well for identical parameter values.

3. Small-body spin

An interesting additional question concerns the significance of the spin of the small body.
Earlier treatments of EMRI waveforms have generally ignored the spin of the smaller body
(e.g., [3, 5]). Indeed, for EMRIs, the dominant effect of the spin of the smaller body comes
through the spin–spin coupling term, which enters the post-Newtonian expansion at the 2 pN
order [18]. This term is considerably smaller, especially for low η, than the coupling term
between the spin of the large body and the orbital angular momentum, which enters at the
1.5 pN order. Here, we use the same formalism as above to check whether we are indeed
justified in neglecting the spin of the small body for EMRIs and IMRIs.

We model the spin–spin coupling by adding a term corresponding to the maximal possible
value of this coupling to the standard 3.5 pN phase (see equations (1.5), (3.2) and (3.6) of
[30]):

�spin = �base − 5σx2, ψspin = ψbase − 10σx2, (17)

where

σ = (721 − 247)/48η. (18)

We are not being consistent here, since the original waveform �base corresponds to two non-
spinning objects, whereas the spin–spin term we have added corresponds to two objects that are
maximally spinning and optimally aligned to produce the largest possible value of spin–spin
coupling. However, our purpose here is not to create an accurate model of a spinning binary,
but rather to estimate the effect of ignoring the spin of the smaller body when the spin–spin
coupling is present. We do that, as in the previous section, by computing the match factor
between hspin and hbase, which we plot in figure 3 for various values of the central body’s
mass.

As expected, the spin–spin coupling is weak at extreme mass ratios. We note that spin–
spin coupling becomes important at mass ratios as low as ∼10−4–10−3 for low-mass central
black holes. This is a much more extreme mass ratio than usually supposed, so ignoring
the spin of the smaller body would risk significantly reducing the match factor, and thus the
detection efficiency. The effect of the spin–spin term is suppressed for high total mass because
the inspiral occurs at a lower frequency, so the amount of dephasing due to spin is limited
by the small number of inspiral cycles in band; when M = 106M�, the match does not drop
below 0.97.

4. Conclusions and future directions

We have shown in this paper that there exists a significant problem with IMRI waveforms:
for a wide range of intermediate mass ratios, both of the presently available approximate
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3.5 PN vs 3.5 PN with spin spin, M=1e4 Msun

3.5 PN vs 3.5 PN with spin spin, M=1e5 Msun

3.5 PN vs 3.5 PN with spin spin, M=1e6 Msun

Figure 3. Match factors M(hbase, hspin) between waveforms that include and omit spin–spin
coupling, computed over the last year of inspiral before the ISCO (or during the time it takes
the GW frequency to increase from 0.01 mHz to the ISCO, if less), as a function of η. Solid,
dashed and dotted curves refer to inspirals into Schwarzschild black holes of 106, 105 and 104

solar masses, respectively.

waveform families (post-Newtonian or EMRI) appear to be invalid, indicating the need for the
development of a new waveform family for intermediate-mass-ratio inspirals. Specifically, if
we place a limit at a match factor of 0.9, which would correspond roughly to a 30% loss in
detection efficiency, we find that both the post-Newtonian and perturbative approximations are
invalid between mass ratios of ∼2 × 10−5 and 10−2 for all SMBH masses that we considered.
We point out, however, that we have maximized the overlap over the phase and time of
coalescence only, so our results may underestimate the extent to which these approximate
waveforms cover the space of ‘true’ waveforms once variation in the intrinsic parameters
(masses) is allowed.

We have also found that spin–spin coupling cannot be ignored for mass ratios η � 5×10−3,
for total mass M = 105M�, and for mass ratios η � 10−3, for total mass M = 104M�. For
total mass M = 106M�, spin–spin coupling can be justifiably ignored for detection purposes.

One possible approach to developing IMRI waveforms would be to build hybrid
waveforms that combine the post-Newtonian and perturbative waveforms. There are at
least two ways in which such waveforms can be developed. Because EMRI waveforms
have been expanded to very high post-Newtonian order [36, 37], one can develop a hybrid
waveform family by adding the lowest order in η but high order in v/c terms to the standard
post-Newtonian waveform. On the other hand, one could add the O(η2) terms from the post-
Newtonian expansion to the O(η) EMRI waveform by equating observables such as the orbital
frequency and frequency derivative between the two prescriptions. This trick has already been
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used to obtain the lowest order conservative correction to the EMRI phase evolution for a
circular inspiral into a non-spinning black hole in [4] and into a spinning black hole in [15],
but can be readily extended to higher orders in η.

We will not be able to test hybrid waveforms for faithfulness until advances in numerical
relativity allow for direct simulations of intermediate-mass-ratio inspirals, or until progress on
the self-force problem makes available approximate solutions at higher orders in η. However,
it may still be possible to find waveforms that effectively cover the space of ‘true’ waveforms.
To do this, we will need to systematically check whether, for a given set of parameters, there is
a hybrid waveform (not necessarily with the same intrinsic parameters) that has a high match
to both post-Newtonian and EMRI waveforms. Since ‘true’ IMRI waveforms are likely to
reside in the space between these approximations, such a hybrid family could be suitable for
creating a bank of waveform templates for detection even if it is not faithful.

The requirements for parameter estimation are more strict than those for detection, since
an effective family of waveforms that may be sufficient for detection can nevertheless yield
significant statistical or systematic parameter estimation errors. The statistical errors caused by
the presence of noise can be analyzed with Fisher information matrix techniques or Markov
chain Monte Carlo searches (e.g., [40]). Meanwhile, systematic errors due to the use of
approximate waveforms can be measured with a technique similar to that proposed in [10].

The creation of IMRI waveforms, the analysis of parameter estimation accuracies and the
eventual development of new data analysis algorithms to enable searches for IMRIs with LISA
will require a significant effort. However, the potential benefits of IMRI observations make
this effort worthwhile. IMRIs may allow the first IMBH detections to be made. They could
add to our understanding of various astrophysical properties occurring in globular clusters and
galactic nuclei. Finally, they will serve as excellent probes of strong-field gravity, allowing us
to measure whether central bodies are really Kerr black holes, and perhaps even making tests
of general relativity possible [9, 16].
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